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Abstract
Motion-adaptive radiotherapy aims to deliver ablative radiation dose to the
tumor target with minimal normal tissue exposure, by accounting for real-time
target movement. In practice, prediction is usually necessary to compensate
for system latency induced by measurement, communication and control. This
work focuses on predicting respiratory motion, which is most dominant for
thoracic and abdominal tumors. We develop and investigate the use of a local
dynamic model in an augmented space, motivated by the observation that
respiratory movement exhibits a locally circular pattern in a plane augmented
with a delayed axis. By including the angular velocity as part of the system
state, the proposed dynamic model effectively captures the natural evolution of
respiratory motion. The first-order extended Kalman filter is used to propagate
and update the state estimate. The target location is predicted by evaluating
the local dynamic model equations at the required prediction length. This
method is complementary to existing work in that (1) the local circular motion
model characterizes ‘turning’, overcoming the limitation of linear motion
models; (2) it uses a natural state representation including the local angular
velocity and updates the state estimate systematically, offering explicit physical
interpretations; (3) it relies on a parametric model and is much less data-
satiate than the typical adaptive semiparametric or nonparametric method. We
tested the performance of the proposed method with ten RPM traces, using the
normalized root mean squared difference between the predicted value and the
retrospective observation as the error metric. Its performance was compared
with predictors based on the linear model, the interacting multiple linear models
and the kernel density estimator for various combinations of prediction lengths
and observation rates. The local dynamic model based approach provides the
best performance for short to medium prediction lengths under relatively low
observation rate. Sensitivity analysis indicates its robustness toward the choice
of parameters. Its simplicity, robustness and low computation cost makes the
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proposed local dynamic model an attractive tool for real-time prediction with
system latencies below 0.4 s.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Motion management is critical in adaptive radiotherapy, where the treatment beam is controlled
in response to the real-time location of the tumor target, by either gating (Keall et al 2002) or
tracking (Nuyttens et al 2006). Regardless of the specific mechanism for real-time control,
it is important to compensate for the corresponding system latency caused by mechanical
adjustment, data communication and processing. This study focuses on investigating real-
time prediction of respiratory motion—the dominant motion mode for thoracic and abdominal
tumors.

The problem of predicting respiratory motion has been intensively studied. The category
of parametric models often relies on local linear assumptions or its extension to autoregressive
moving average (ARMA) models. Such study gives rise to direct application of the Kalman
filter and multiple models (McCall et al 2007, McMahon et al 2007, Sharp et al 2004, Putra
et al 2008). Effort has also been made in performing the regression in a different representation
space, such as with respect to the sinusoidal (Vedam et al 2004) or wavelet basis (Ernst
et al 2007). Parametric models enjoy the advantage of simplicity, low data burden and
often permit efficient recursive algorithms in updating the parameters of interest. Meanwhile,
nonparametric inference models relax explicit assumptions of local dynamics, and rely on
consistency to ‘learn’ the future behavior from previous observations (Isaksson et al 2005,
Kakar et al 2005, Murphy and Dieterich 2006, Ruan et al 2007, Ruan 2010, Ruan and Keall
2010). The nonparametric methods often require intensive training on a large dataset, and
usually demand relatively heavy computation in real-time. To achieve feasibility and flexibility
simultaneously, one needs to handle with care the intrinsic trade-off between the large amount
of data to establish a reliable training set versus the requirement for fast response and update.

This study aims to investigate and develop an approach to perform well in the short-to-
middle prediction length region, under a low data rate condition. This covers most practical
situations of gating-based adaptive treatment as well as non-image based tracking, where the
system latency is relatively short. The key idea here is to use a local dynamic model in an
augmented space so to address ‘turning’ locally when indicated by the immediate preceding
observations. The main novelty of this work lies in the design of the state space and the
proposed local circular motion (LCM) model. The first-order extended Kalman filter (EKF)
is used for the purpose of state estimation and prediction.

For simplicity and clarity, we present the proposed model in one-dimensional spatial
coordinate in this paper. Extension to higher dimension can be achieved by applying
the proposed method along each coordinate separately. Section 2 introduces the local
characterization of the respiratory motion and the corresponding EKF scheme. Section 3
provides data details and simulation results. Finally, we conclude with a brief technical
discussion.

2. Methods

In this section, we propose a local characterization of respiratory motion in an augmented
space and present a prediction method based on such characterization.
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Figure 1. Left column: RPM traces, original (thin solid line) and noise-filtered (solid line); right
column: 6 s segment of the trace in augmented space with 0.4 s delay, original (thin solid line) and
noise-filtered (solid line).

2.1. Modeling background

Breathing motion has a semi-periodic pattern due to drifts in mean, frequency and phase.
Ruan (2010) and Ruan et al (2007, 2008) used augmented coordinates to capture the local
dynamics of breathing motion, consisting of a coordinate axis of the current observation and an
augmented axis of a past observation of a fixed temporal delay. In the augmented coordinate
plane, trajectories of breathing motion have been observed to have a pattern of time-varying
quasi-ellipses. Figure 1 illustrates traces clinically obtained, the corresponding noise-filtered
traces, and typical patterns of the clinical and noise-filtered traces in the augmented coordinate
plane. The difference between RPM and noise-filtered RPM traces is marginal and barely
noticeable in figures 1(a) and (c). The patterns in the augmented coordinate plane were
obtained for the RPM traces over the time interval (17 s, 23 s), to illustrate the local dynamics.
The clinical trace data were obtained with the real position management system (RPM system,
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Varian Medical, Palo Alto, CA) at 30 Hz sampling rate. The noise-filtered traces were
obtained by passing the clinical traces through a low-pass filter described in section 3. The
unit of displacement is RPM-relative and dimensionless.

The quasi-elliptical pattern in the plane augmented with the delayed coordinate axis
is originated from the semi-periodic evolution of respiratory motion. Motivated by this
observation, we model respiratory motion as a one-dimensional projection of a curvilinear
motion in a plane augmented with an independent auxiliary axis rather than the delayed axis.
This alternative setup provides a much more efficient model structure, yet carries the delay-
augmentation intuition. Local motion along a curvilinear trajectory can be represented in terms
of a circular motion. The key idea of this work is to utilize these structural observations in
solving the prediction problem. We characterize the local respiratory behavior with a circular
motion model in the alternative augmented plane and incorporate the dynamical structure into a
Bayesian formulation. Introducing angular velocity in the augmented dynamic space encodes
the locally circular behavior into the dynamic model and captures the natural evolution of
breathing motion. This characterization distinguishes the current work from previous linear
models based on local linear dynamics assumptions. The latter often fail to predict ‘turning’
behavior of respiratory motion.

2.2. Representations of planar circular motion

A planar curve can be approximated locally by an arc of a circle, and local motion along
a curve can be represented approximately in terms of a circular motion. We first consider
the local motion as a uniform circular motion with constant speed and turning with constant
angular rate. The assumption on the uniformity will be relaxed in the following section, and
both the speed and the angular velocity will be allowed to evolve over time. Let �(t) denote
the angular velocity. Then, the uniform circular motion in the x–y plane can be described in a
differential form (Greenwood 1987):

ẍ(t) = −�(t) ẏ(t), (1a)

ÿ(t) = �(t) ẋ(t), (1b)

�̇(t) = 0. (1c)

The center of the circular trajectory of the differential equations (1) remains constant,
but not necessarily at the origin of the x–y plane. Equations (1) can be represented in a
discrete-time form as

x(k + 1) = x(k) +
sin �(k)T

�(k)
ẋ(k) − 1 − cos �(k)T

�(k)
ẏ(k), (2a)

ẋ(k + 1) = cos �(k)T ẋ(k) − sin �(k)T ẏ(k), (2b)

y(k + 1) = y(k) +
1 − cos �(k)T

�(k)
ẋ(k) +

sin �(k)T

�(k)
ẏ(k), (2c)

ẏ(k + 1) = sin �(k)T ẋ(k) + cos �(k)T ẏ(k), (2d)

�(k + 1) = �(k), (2e)

where k denotes the discrete-time index corresponding to t = kT with a uniform interval T.
Derivation of (2) can be found in the appendix. The first two equations describe the evolution
of position and velocity along one coordinate of the augmented space, while the next two
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prescribe the dynamics for the other dimension. The position x(k + 1) is the physical quantity
of interest, and it will be used to describe respiratory motion in the following section. It
evolves based on its current value and the velocities ẋ(k) and ẏ(k), whose temporal behaviors
are fully captured by (2b) and (2d).

Defining the discrete-time state vector by x(k) = [x(k) ẋ(k) ẏ(k)�(k)]T ,4 we can write
a discrete-time state equation to characterize the evolution of x(k) as

x(k + 1) = f(x(k)), (3)

where

f(x(k)) =

⎡
⎢⎢⎣

1 sin �(k)T

�(k)
− 1−cos �(k)T

�(k)
0

0 cos �(k)T − sin �(k)T 0
0 sin �(k)T cos �(k)T 0
0 0 0 1

⎤
⎥⎥⎦ x(k). (4)

The evolution of position x(k) is the projection of the planar circular motion onto the x-
coordinate. The y-axis is an auxiliary axis augmented to define the circular motion.

2.3. Modeling of respiratory motion

We use x(k) to denote the unknown true position of a respiratory motion at time instant t = kT .
The observation of x(k) is modeled noise-corrupted:

z(k) = x(k) + w(k), (5)

where z(k) is the observation at time k and w(k) denotes the corresponding additive
measurement noise. The set of observations up to time k is denoted by Zk =
{z(1), z(2), . . . , z(k)}. The goal is to predict the position at time kT + τ (τ > 0), based
on the measurement set Zk.

The LCM model was introduced in (3). However, deviations are inevitable from the
local motion model as the respiratory states evolve. We accommodate such deviations by
introducing an additive process noise vector v(k) in (3), and allowing it to drive the evolution
process via

x(k + 1) = f(x(k)) + v(k), (6)

with the map f (·) given by (4). For simplicity, we assume that the process noise vector v(k) is
a zero-mean white sequence, and assume that the noise components contributing to ẋ(k + 1),
ẏ(k + 1) and �(k + 1) are mutually uncorrelated. Specifically, we assume that the covariance
matrix of the noise is given by

Q(k) = E[v(k)vT (k)] =

⎡
⎢⎢⎣

1
3q1T

3 1
2q1T

2 0 0
1
2q1T

2 q1T 0 0
0 0 q2T 0
0 0 0 q3T

⎤
⎥⎥⎦ . (7)

Here, the parameters qi, i = 1, 2, 3, are the power spectral densities of the continuous
counterparts of the last three components of v(k). These parameters each characterize the
strength of possible changes in ẋ(k), ẏ(k) and �(k) over the sampling interval T. Since �(k)

is the sum of a white noise sequence with variance q3T , it becomes a discrete-time Wiener
process. This process noise vector v(k) accommodates temporal changes in mean position
and allows the angular velocity to evolve gradually as well.

4 Throughout this paper, vector and matrix transposes are indicated by a superscript T.
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The discrete-time observation model (5) can be formalized in terms of x(k) as

z(k) = Hx(k) + w(k), (8)

where H = [1 0 0 0]. The measurement noise w(k) is modeled as a sequence of zero-mean
white noise with variance R(k). Under these assumptions, the state equation (6) and the
measurement equation (8) form a stochastic discrete-time dynamic system in a standard form:

x(k + 1) = f(x(k)) + v(k),

z(k) = Hx(k) + w(k).
(9)

We further assume the noise sequences v(k) and w(k), and the initial state x(0) to be mutually
independent. Note that the state equation is nonlinear. The prediction of the future position
x(kT + τ), based on the measurement set Zk, requires a nonlinear estimation. In the following
section, we describe steps for the prediction using the first-order EKF.

2.4. Prediction of respiratory motion

The first-order EKF is one of the simplest structures for implementing a nonlinear estimator
(Ristic et al 2004). It relies on a first-order expansion of the nonlinear state dynamics f(x(k)),
and calculates the state estimate and its covariance matrix recursively. Let x̂(k|k) denote an
approximate conditional mean of the state x(k) given the observation set Zk and let P (k|k)

denote its associated covariance. One cycle of the first-order EKF, evolving x̂(k|k) and P (k|k)

into x̂(k + 1|k + 1) and P (k + 1|k + 1), can be described as follows (Grewal and Andrews 1993,
Bar-Shalom et al 2001).

Time update
The one-step predicted state and the corresponding covariance are given by

x̂(k + 1|k) = f(x̂(k|k)),

P (k + 1|k) = fx(k)P (k|k)fx(k)T + Q(k),
(10)

where fx(k) is the Jacobian of the vector f(x) evaluated at x̂(k|k),

fx(k) =

⎡
⎢⎢⎣

1 sin �(k)T

�(k)
− 1−cos �(k)T

�(k)
f1�(k)

0 cos �(k)T − sin �(k)T f2�(k)

0 sin �(k)T cos �(k)T f3�(k)

0 0 0 1

⎤
⎥⎥⎦
∣∣∣∣∣∣∣∣
x(k)=x̂(k|k)

.

Here, the partial derivatives with respect to �(k), fi�(k), i = 1, 2, 3, are given by

f1�(k) = 1

�(k)2
{(�(k)T cos �(k)T − sin �(k)T )ẋ(k) − (�(k)T sin �(k)T −

1 + cos �(k)T )ẏ(k)},
f2�(k) = −T sin �(k)T ẋ(k) − T cos �(k)T ẏ(k),

f3�(k) = T cos �(k)T ẋ(k) − T sin �(k)T ẏ(k).

The one-step predicted measurement and the corresponding covariance are given by

ẑ(k + 1|k) = Hx̂(k + 1|k),

S(k + 1) = HP (k + 1|k)HT + R(k + 1).
(11)

State update
The state updated with new measurement z(k + 1) and the corresponding covariance are

given by

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1)(z(k + 1) − ẑ(k + 1|k)),

P (k + 1|k + 1) = P (k + 1|k) − K(k + 1)S(k + 1)K(k + 1)T ,
(12)

where K(k + 1) is the Kalman gain
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Table 1. RPM dataset information.

Subject ID (i) 1 2 3 4 5 6 7 8 9 10

STDi 0.49 0.50 0.30 0.20 0.32 0.17 0.07 0.23 0.28 0.11
P-Pi 2.54 2.36 1.27 1.12 1.87 0.97 0.29 0.88 1.22 0.43
P-Pi/STDi 5.11 4.74 4.21 5.66 5.92 5.61 4.59 3.88 4.44 4.05
Duration (s) 140 79 113 165 165 117 150 165 160 162

K(k + 1) = P (k + 1|k)HT S(k + 1)−1.

Given x̂(k|k), the position at time kT + τ (τ > 0) can be predicted at the first step of the
above cycle. Let x̂(kT + τ |k) denote the prediction of the true position at time kT + τ based on
the measurement set Zk. The prediction is a function of τ and x̂(k|k), and it can be obtained
by evaluating the first component of x̂(kT + τ |k) of (10) with T in (4) replaced by τ . That is,

x̂(kT + τ |k) = x̂(k|k) +
sin �̂(k|k)τ

�̂(k|k)
ˆ̇x(k|k) − 1 − cos �̂(k|k)τ

�̂(k|k)
ˆ̇y(k|k). (13)

Finally, it is remarked that the discrete-time system (9) does not satisfy the nonlinear
observability rank condition at �(k) = 0, which is one of the conditions to assure the
boundedness of the estimation error (Reif et al 1999). The angular rate, however, remains
away from zero at most sample points along a respiratory trajectory, and the rank condition
appears not a problem in practice. This was confirmed in experiments based on clinical RPM
data in section 3.

3. Experimental results and analysis

3.1. Data description

We used the RPM system to obtain one-dimensional traces of fiducial markers placed
on the patient’s chest wall. The RPM traces are believed to be highly correlated with
respiratory motion and sufficiently capture the temporal behavior of respiration. Moreover,
the performance of respiratory prediction algorithms depends on the fundamental variation
pattern rather than the amplitude, so the RPM traces are reasonable test subjects for algorithmic
development. To rid the adverse impact of the arbitrary scaling in RPM amplitude, we adopt
the normalized root mean squared error (nRMSE) as the performance measure for each trace
i, defined by the usual RMSE divided by the standard deviation (STD) of the observed sample
values:

nRMSEi = RMSEi

STDi

=
√

1
|Ni |

∑
k∈Ni

(zi(kT + τ) − x̂i (kT + τ |k))2√
1
Ni

∑Ni

k=1(zi(k) − 1
Ni

∑Ni

k=1 zi(k))2
, (14)

where Ni denotes the time index set upon which the prediction was performed for trace i, and
|Ni | denotes its cardinality. Ni denotes the number of sample points of trace i. Population
nRMSE (across traces) is computed by taking the average of the trace-wise nRMSE, i.e.

nRMSE =
√

1

number of traces

∑
i

nRMSE2
i . (15)

We report the RPM data characteristics in table 1, where STDi and P-Pi denote the STD and
the peak-to-peak displacement of trace i, respectively.
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3.2. Experimental details

We implemented our predictor using the EKF based on the local motion model described in
section 2. The predictor is referred to as the LCM model hereafter. The design parameters
q1, q2 and q3 in (7) were set to 0.2, 2 × 10−4 and 2 × 10−3, respectively. The parameter values
were chosen to minimize nRMSE of (15) for a trace separate from the testing population for
10 Hz sampling rate and 0.4 s prediction length on a coarse grid, and they were used for all
combinations of the sampling rate and prediction length in our experiments. The nRMSEi (14)
was obtained for each trace after an initial warm-up phase of five samples of the EKF. Note
that the number of samples for warm-up is very small and on-line ‘training’ is not required for
the EKF.

A Chebyshev type II filter was implemented to filter out the measurement noise from the
position observation of RPM traces, in order to determine the STD of the measurement noise
in (9). The order of the filter was 5 and the cutoff frequency was set to 1.5 Hz. The frequency
characteristic of the low-pass filter is relatively light in terms of noise filtering. The filter was
used to obtain the noise-filtered RPM trace data presented in figure 1. Based on numerical
experiments similar to the method described in Putra et al (2008), we obtained the STD of
the measurement noise and set it to 10−2. The characterization of the measurement noise
statistics is subjective, since we cannot determine the true position from real trace data and the
probabilistic distribution of the noise depends on the frequency characteristics of a low-pass
filter employed. As a consequence, it is more reasonable to quantify prediction performance
in terms of measurement prediction error zi(kT +τ)− x̂i (kT +τ |k) in (14) rather than position
error against unknown true position.

We implemented for comparison an adaptive linear filter (denoted linear) (Haykin 2002)
and a kernel density estimator (KDE) (Ruan 2010). The adaptive linear model is the most
widely applied predictor due to its simplicity and efficiency. The KDE predictor, on the other
hand, is representative of machine learning based approaches, and enjoys the advantage of
flexibility and good performance for long prediction lengths. We also implemented a predictor
based on the interacting multiple model (IMM) estimator following the design presented in
Putra et al (2008). This predictor (denoted MLM) employs two Kalman filters, each matched
to one of the two linear models: a constant velocity model and a constant acceleration model.
The parameters of MLM were set as Q1 = 10, Q2 = 0.5, and R1 = R2 = 10−4. The elements
of the Markovian transition matrix were set to the values given in Putra et al (2008). The
process noise variances Q1 and Q2 were chosen so that nRMSE of (15) could have a value
near its minimum over a set of sampling rates and prediction lengths. The IMM estimator
adaptively adjusts its model probabilities so that the estimator can be matched to changes of
system dynamics.

3.3. Experiment results and observations

Figure 2 presents traces 4 and 7 and the corresponding trajectories predicted with MLM
and the proposed LCM predictor. The figure indicates that LCM can reduce ‘overshoots’
and ‘undershoots’ in prediction more effectively than MLM. This result demonstrates the
effectiveness of a circular motion model over a linear model in characterizing the local
respiratory motion. Recall that MLM is implemented using the IMM estimator with two
Kalman filters, each matched to a linear model. In figure 2, slight lags in the prediction
are observed for both of the predictors. In general, such lags can be reduced by selecting
increased process noise, but at the cost of a significant increase in overshoots and undershoots
that leads to large deviations in prediction. The figure also indicates that a small number
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Figure 2. Trace prediction with MLM and LCM predictors (0.4 s prediction length and 10 Hz
sampling rate).

(five) of samples suffice to warm-up MLM and LCM. Figure 3 presents the same two traces
and the corresponding trajectories predicted with KDE and LCM. KDE normally requires at
least one-cycle worth of data for training to ensure sufficient recognition power for various
breathing phases. In the figure, the KDE starts to predict the trace at 11.3 s after an initial
training stage. The figure shows that the KDE predicts the respiratory motion accurately at
most sample points. However, large deviations are also observed when respiratory motion
changes irregularly and its behavior differs significantly from preceding one in a training
window. Figure 4 reports the prediction performance in terms of normalized root mean
squared difference (14) for various combinations of the prediction length and observation
sampling rate. Traces 4 and 7 are the most challenging to predict, yielding the highest nRMSE
throughout all prediction lengths and sampling rates in figure 4. This phenomenon can be
explained by their irregular variations in mean position and frequency. Figure 5 shows the
change of performance as the prediction length varies for these two traces. Figure 6 illustrates
the collective performance across all traces.

It can be observed from figure 4 that the proposed LCM predictor performs uniformly
better than MLM for all traces and for all the combinations of the prediction length and
sampling rate in the figures. This advantage is statistically significant. We confirmed the
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Figure 3. Trace prediction with KDE and LCM predictors (0.4 s prediction length and 10 Hz
sampling rate).

significance via the paired Student t-test that yields p-values less than 5.6 × 10−3 for all the
combinations of the prediction length and sampling rate. The advantage of LCM over linear
is also obvious from figure 4. The next comparison is between LCM and KDE. It can be
observed from figures 4(a) and (b) that the LCM predictor outperforms the KDE predictor
for a low prediction length (0.2 s) and low sampling rates (5 and 10 Hz). The paired t-test
between LCM and KDE yields p = 3.3 × 10−5 for 5 Hz and p = 9.2 × 10−4 for 10 Hz. This
advantage becomes less significant and finally vanishes as we move to the region of longer
prediction length (the right-hand side column in figure 4) and higher observation rates (bottom
rows in figure 4). The advantage of the KDE becomes more significant as the prediction length
increases over 0.4 s. This observation is corroborated with figure 5, where the LCM performs
the best when the prediction length is short and then becomes dominated by the KDE predictor
as the prediction length increases. The comparison among various methods is summarized in
table 2.

Interestingly, we can ‘partition’ the region of operation defined by the prediction length
and sampling rate according to the best predictor with respect to nRMSEi of (14) for each
trace. More specifically, it can be observed from figure 4 that the LCM predictor offers the
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Figure 4. Comparison of prediction performance in terms of nRMSE. (a), (b) At 5 Hz sampling
rate; (c), (d) at 10 Hz sampling rate; (e), (f) at 15 Hz sampling rate; (g), (h) at 30 Hz sampling rate.
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Figure 5. Performance as a function of prediction length. Upper row: 5 Hz sampling rate; bottom
row: 10 Hz sampling rate.
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Figure 6. nRMSE versus sampling rate for prediction lengths 0.2 s and 0.4 s across all traces.

best performance when the values of the prediction length and sampling rate are both low, and
the KDE provides the best performance when both of these parameters are high. This implies
that we can realize uniformly best prediction performance for each patient by choosing either
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Table 2. Comparison among various methods.

Predictor Training Warm-up Computation Major strength Major weakness

Linear No Yes Low Simplicity Operate on a single
linear mode

MLM No Yes Low Adaptive switching
among multiple
models

Inferior for long
prediction during
which model in action
switches

KDE Yes No O (# of template
seeds)

Flexibility, almost
constant w.r.t
prediction length

Computation, single
point prediction

LCM No Yes Low Consistent
performance w.r.t.
sampling rate

Intrinsically local,
degraded performance
for long prediction

the LCM or the KDE predictor. The two predictors can be concurrently executed to evaluate
and compare the error (14) for a trace segment before or during radiation delivery.

The near-constant performance of the proposed LCM model with respect to the sampling
rate is observed from figure 6, which is desirable for image-guided treatment. From a practical
point of view, on-board imagers or portal imagers have nominal operating frame rates of 5–
10 Hz to achieve reasonable image quality. Furthermore, imaging dose is roughly proportional
to the total number of images taken during the whole treatment session, thus depends on the
imaging rate linearly. The consistent performance of LCM with respect to the sampling rate
promises imaging dose reduction without compromising prediction performance. An imaging
frequency of 5–10 Hz has been suggested for imaging dose considerations (Jiang 2006).
When observations are acquired at 5 Hz, the 0.2 s prediction capability of the LCM suffices
to extrapolate the dynamics until the arrival of the next observation image, for monitoring the
target location in real-time.

As in any estimation problems involving configuration parameters, performance
robustness with respect to such parameter setting is highly desirable. In our case, the setting
parameters are (q1, q2, q3) and the population nRMSE (15) is not sensitive to their values. It
turns out that the nRMSE values change less than 5 × 10−3 against our design for the choice
of (q1, q2, q3) over the set ([0.15, 2.0], [10−5, 10−3], [10−4, 5 × 10−3]). This statement holds
for all the combinations of the prediction length and sampling rate in figure 4.

4. Conclusion and future work

This study proposes a simple predictor based on a local dynamic model. In particular, the model
introduces the angular velocity into the state estimate to encode the semi-periodic evolution of
respiratory motion. This novel model structure circumvents the limitation of linear models and
allows the state estimates to adjust for the turning behavior in a natural fashion. The predictor
performs effectively to compensate for system latency under most practical situations of gating-
based adaptive treatment as well as non-image based tracking. The proposed LCM model
enjoys the simplicity and is economic in terms of data requirement, offering a performance
almost independent of the observation sampling rate. This desirable property complements
the performance of nonparametric models such as KDE-based approaches, which require
abundant data for efficient learning. As extension of this study, we will investigate the use
of local dynamic models in predicting multi-dimensional signals from a holistic perspective,
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rather than simplistically applying the local dynamic model to each coordinate separately. We
will also explore the potential benefit of incorporating the proposed local dynamic model into
a multiple model setting to further improve the prediction performance.

Acknowledgments

The authors are grateful to the reviewers for their helpful comments and suggestions. SMH
was supported by BK21 program. DR was supported partially by AAPM research seed grant
and AACR career development award. She thanks Dr Paul Keall for his continuous guidance
and support.

Appendix: Derivation of equation (2)

Using the state vector xc(t) = [x(t) ẋ(t) y(t) ẏ(t)�(t)]T , we can rewrite equation (1) in the
form of a continuous-time state equation:

ẋc(t) =

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 −�(t) 0
0 0 0 1 0
0 �(t) 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦ xc(t). (A.1)

Since �(t) is constant, we can set it to a constant �0. Denoting by A the matrix of (A.1) with
�0, we can represent (A.1) by ẋc(t) = A xc(t), which is a linear time-invariant system. The
linear time-invariant system can be transformed into a discrete-time form as (Rugh 1996)

xc(k + 1) = exp(AT ) xc(k). (A.2)

We use the relationship exp(AT ) = L−1[(sI − A)−1] to obtain the state transition matrix
exp(AT ), where L−1 denotes the inverse Laplace transform and I is the identity matrix. We
have

(sI − A)−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
s

1
s2+�2

0
0 − �0

s(s2+�2
0)

0

0 s

s2+�2
0

0 − �0

s2+�2
0

0

0 �0

s(s2+�2
0)

1
s

1
s2+�2

0
0

0 �0

s2+�2
0

0 s

s2+�2
0

0

0 0 0 0 1
s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (A.3)

and its inverse Laplace transform

L−1[(sI − A)−1] ==

⎡
⎢⎢⎢⎢⎢⎣

1 sin �0T

�0
0 − 1−cos �0T

�0
0

0 cos �0T 0 − sin �0T 0
0 1−cos �0T

�0
1 sin �0T

�0
0

0 sin �0T 0 cos �0T 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . (A.4)

Substituting result (A.4) into (A.2) and replacing �0 by �(k) yields the discrete-time state
equation (2). The same result can be obtained by discretizing the nonlinear system (A.1)
directly (Kazantzis and Kravaris 1999).
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