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Accurate descriptions of organ motion due to breathing are highly desirable for radiation treatment
planning. This paper proposes an index that quantifies the irregularity of a signal related to respi-
ratory motion. The method works by finding the periodic band-limited signal that best fits the signal
samples, and then computing the root mean squared �RMS� residual error. The fitted signal itself
may be useful for treatment planning. Using clinical data describing amplitude-time relationships
�RPM, Varian� from twelve patients, we correlated the proposed index against relevant metrics from
various treatment planning schemes. Simulation results demonstrate a reasonable match with all
treatment methods considered, suggesting that the proposed irregularity index is suitable for a
variety of treatment methods. Compared to the modified cosine function, which was investigated
previously for breathing pattern models, the proposed approach is more representative, flexible, and
computationally efficient. © 2006 American Association of Physicists in Medicine.
�DOI: 10.1118/1.2207253�
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I. INTRODUCTION

Characterization of organ motion is important in radiation
therapy, including dose planning and treatment delivery.1–5

Tumor motion, especially in lung/liver regions, is highly cor-
related with breathing patterns. Therefore, an index that char-
acterizes breathing regularity can facilitate treatment plan-
ning for tumors in those regions, particularly for
individualized treatment planning.

Periodicity has been a major assumption in breathing tra-
jectory analysis, as good reproducibility indicates the poten-
tial for a simple structured treatment plan tailored toward the
fundamental breathing pattern. Harmonic analysis has been
employed widely to characterize respiratory patterns.6–8

Peaks of the Fourier spectrum are often used to determine the
dominating periodic behavior of the temporal trajectory.
Such approaches lack a “goodness” measure, i.e., it is not
clear how a periodic signal having the dominant frequency
differs from the true trajectory. Consequently, no fundamen-
tal periodic pattern is available to judge the soundness of
such a result.

In this paper, we propose a rigorous general framework
for periodicity analysis based on subspace projections. For
each period within a physiologically reasonable range, a
measured breathing signal is projected onto the subspace of
all signals having that period to obtain the “best fit” periodic
signal in the least squared error �LSE� sense. Residual errors
for each such period are then compared to yield the overall
best periodic approximation. The estimated trajectory ob-

tained by this “projection” method is therefore the closest
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periodic signal with respect to observed data. We derived the
method in continuous signal space to account for the sam-
pling effect explicitly. We also allow temporal samples to be
nonuniformly spaced to offer more freedom for the data ac-
quisition procedure.

II. METHODS AND MATERIAL

A. Experimental setup

We used the Real-Time Position Management �RPM,
Varian Medical Systems, Palo Alto, CA� system to obtain the
trajectory of an external fiducial placed on each patient’s
chest wall. This fiducial tracking system records data in time-
displacement pairs that are generally assumed to be highly
correlated with superior-inferior diaphragm motion.9 This
system is most useful for treating patients with tumors in the
chest or lung area without compromising their breathing.

Twelve such clinical breathing signals were used in this
study. The characteristic parameters of this population of
data are listed in Table I.

B. Technical problem formulation

Given a set of discrete samples of a breathing trajectory,
we want to find the periodic signal that best matches the
observation data. This is equivalent to reconstructing a peri-
odic signal of unknown period from its noisy discrete
samples. For this problem to be feasible, we assume that
there is some maximal frequency component in the signal.

This assumption is physiologically reasonable. We thus focus
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on the subspace of band-limited periodic signals. We formu-
late the problem in a multilayer optimization setup where we
search over all possible periods for the “best-fit” signal. For
each period within a reasonable range, the observed breath-
ing trajectory is projected onto the subspace of all band-
limited signals having that period to obtain the closest
matching periodic function. Projections from each such sub-
space are then compared to yield the overall best periodic
approximation. This method accounts for the discrete tempo-
ral sampling explicitly, and allows for the possibility of non-
uniform sampling.

We model the observation data yi as a temporal trajectory
sampled at �ti�i=1

N with additive noise:

yi = f�ti� + ni, i = 1,2, . . . ,N , �2.1�

where f is the unknown ground-truth continuous periodic
function whose spectrum has finite support between �−� ,��
and ni denotes the additive noise.

If f�t� is a band-limited function with period T, then we
follow Ref. 10 to rewrite it as linear combination of Fourier
harmonics:

f�t� = �
k=−K

K

cke
j2�kt/T, K = � T

2 � t � , �2.2�

where ck’s are the coefficients for Fourier harmonics,
�t�mini�ti− ti−1�, and �·� denotes the floor function.

Evaluation of the above representation at �ti�i=1
N can be

TABLE I. Data set information and experiment results.

ID V.S. Parameter 1 2 3 4 5

Data cha
STD �cm� 0.158 0.210 0.266 0.242 0.206

Breathing trajectory fittin
period �s� 4.7 4.6 4.9 5.3 5.3
RMSE �cm� 0.138 0.171 0.216 0.139 0.193
Dose error �%� 1.667 2.793 3.527 2.092 3.217
PTV margin �cm� 5.940 5.900 5.523 5.723 5.727

95% dose coverage 0.909 0.887 0.850 0.904 0.878
Breathing trajectory fit

Period �s� 4.7 4.4 4.5 5.4 4.1
RMSE �cm� 0.135 0.155 0.102 0.132 0.162
Dose error �%� 1.595 2.440 1.638 1.983 2.352
95% dose coverage 0.915 0.903 0.934 0.903 0.876

Result for 20 s
Period �s�b 4.2 4.2 4.5 5.2 4.3
RMSEtrain �cm�c 0.153 0.151 0.089 0.126 0.082
RMSEtest �cm�d 0.177 0.256 0.150 0.231 0.318

aData are normalized to have zero mean and 1 cm peak to peak variation.
bThis period is obtained from the training data �first 20 s the breathing trac
cRMSE evaluated with the training data only.
dRMSE evaluated by extending the periodic pattern obtained from training
compactly rewritten in vector form as
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f = GTc , �2.3�

where f= �f�t1� , f�t2� , . . . , f�tN��T denotes the discrete samples
of the underlying function f; c= �c−K ,c−K+1 , . . . ,cK�T is the
concatenation of Fourier coefficients; and the matrix G is
defined as

GT�i,k� = ej2�kti/T. �2.4�

Therefore, given the observed sample trajectory y
= �y1 ,y2 , . . . ,yN�T, the optimal period T* is the solution to the
following optimization problem:

T* = argmin
T

min
c�C2K+1

�y − GTc�2, �2.5�

where C2k+1 is the set of vectors of length �2k+1�, and �y�2

=�i=1
N 	yi	2. The closest periodic signal to the sampled trajec-

tory in LSE sense is then given by

f*�t� = �
k=−K

K

ĉke
j2�kt/T*

, �2.6�

where K= �T* /2� t� and ĉk are obtained as the components of
solution to Eq. �2.7� when T=T*.

For a given candidate period T, the bandwidth parameter
K= �T /2� t� is a constant, and the inner optimization problem
becomes an ordinary least-squares minimization:

cT
* = argmin

c�C2K+1
�y − GTc�2. �2.7�

From classical optimization theory,11 the optimal cT
* of Eq.

6 7 8 9 10 11 12

rizationa

0.259 0.242 0.267 0.283 0.313 0.335 0.202

h modified cosine model
4.3 4.9 6.4 9.5 5.6 3.0 5.3

0.224 0.145 0.208 0.153 0.096 0.337 0.169
3.580 2.402 3.293 2.496 1.454 6.144 2.161
5.859 5.646 5.338 5.724 5.522 5.951 5.835

0.851 0.906 0.858 0.890 0.938 0.811 0.888
ith projection method
4.6 4.7 7.2 9.7 5.6 3.1 5.2

0.127 0.115 0.075 0.148 0.090 0.328 0.166
1.721 1.832 1.210 2.471 1.431 6.137 2.066
0.910 0.924 0.949 0.905 0.942 0.836 0.895

ng, 10 s testing
4.8 4.8 7.3 9.0 5.7 3.0 5.0

0.075 0.121 0.042 0.116 0.078 0.228 0.049
0.283 0.141 0.147 0.290 0.150 0.580 0.3062

�.

test portion of the breathing trace.
racte

g wit

ting w

traini

e only

to the
�2.7� satisfies the normal equation:
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�GT
*GT�y = GT

*cT
* , �2.8�

where GT
* is the conjugate transpose of GT and GT

*GT is
known as the Gram matrix.

Moreover, when the sample size is large enough, specifi-
cally N�2K+1, which we assume hereafter, GT has full col-
umn rank, and the �2k+1�� �2k+1� Gram matrix GT

*GT is
invertible.12 The optimal solution for Eq. �2.8� can be written
explicitly as

cT
* = �GT

*GT�−1GT
*y . �2.9�

At this point, we have solved the inner optimization prob-
lem in Eq. �2.5� in closed form. The feasible range of periods
T in the outer minimization can be designed by incorporating
physical knowledge. For instance, normal breathing is ex-
pected to have a period between 1 and 10 s. Moreover, even
though the peak of the Fourier spectrum is not informative
enough by itself, it turns out to be a reasonably good initial-
ization for our method. Notice that if exhaustive search over
T is to be applied in 2.5, we need to evaluate Eqs. �2.9� and
�2.6� for each T of interest. Thus the computation cost de-
pends both on how finely we sample the period parameter T
and the range of search. Using a good initial guess for T* can
reduce the search range and thus reduce computation sub-
stantially. Also, reasonable initialization helps to prevent the
algorithm from falling into nonphysical local minima. Since
it is now a simple one-dimensional optimization problem to
find T*, we use an exhaustive line search over a relatively
small interval thanks to a good Fourier-based initialization.
Alternative optimization approaches like multiresolution or
incremental refinement could be used to speed up the pro-
cess. Due to the use of superposition of harmonics to de-
scribe periodic functions, projection to the subspace corre-
sponding to periodic functions with period 2T would
naturally yield a better data fit than the projection onto the
subspace for period T. In other words, a function of period T
is certainly a function of period 2T, but not vice versa. How-
ever, the additional descriptive power may not always be
desirable, since this could cause overfitting introduced by
noise. Initialization by detecting the peak of the Fourier
spectrum picks out the dominant harmonic component and
the algorithm only needs to search over a relatively small
neighborhood around that initialization point, with the con-
fidence that the local minimal obtained would be physiologi-
cally optimal.

Finally, our proposed irregularity index is the root mean
squared error �RMSE� between the overall optimal periodic
signal and the measured trajectory:

RMSE =
 1

N
�
i=1

N

�f*�ti� − yi�2. �2.10�

C. Verification and test design

Under Institutional Review Board �IRB� approved proto-
col, we have used the RPM system �Varian, Palo Alto, CA�
to obtain breathing trace data recorded at 10 Hz with dura-

tion 30 s from 12 different patients. The recorded RPM data
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have relative units. To better illustrate the major idea in this
paper, we normalize all the breathing trace data to have uni-
form zero mean and 1 cm peak-to-peak variation. Shifting
the mean does not introduce any bias into any treatment
simulation since it is a global quantity; while normalizing the
amplitudes makes the data more representative of typical tu-
mor motion induced by respiratory motion. The standard de-
viations of these normalized data are listed in Table I. To
justify the soundness of the proposed irregularity index, we
have virtually simulated a one-dimensional phantom object
of size 5 cm that moves according to the observed trajecto-
ries to mimic the behavior of a 5 cm size tumor with peak-
to-peak motion about 1 cm, which is realistic in clinical situ-
ations. A single ideal one-dimensional treatment beam, or in
fact, delivery pattern of the same size �5 cm� is designed for
dose delivery simulations. It has no penumbra, and com-
pletely covers the simulated target with uniform radiation
intensity. This idealized energy deposition model will be
used hereafter to illustrate the potential impact of motion
patterns and how they influence energy deposition.

To verify that the proposed “irregularity index” and the
fundamental pattern obtained from the projection model are
clinically significant, we have designed three sets of experi-
ments.

First, we show that the RMSE, which is a mathematical
criterion, is well correlated with clinically critical metrics. In
this paper, we use dose error, planning target volume �PTV�
margin and 95% dose coverage to characterize performances.
In particular, dose error is computed in percent as the nor-
malized difference between received dose and the ideal dose
that corresponds to a perfect overlap between the target and
treatment beam throughout the whole treatment procedure;
PTV margin is the expansion needed to ensure that the entire
clinical target volume receives the prescribed dose; and 95%
dose coverage is computed as the portion of the target that
receives no less than 95% of the designated dose with no
margin. To account for the interplay between target motion
and treatment beam adjustment, the phantom object is moved
conforming to the observed breathing trace and the treatment
beam is scheduled according to a designated pattern. We
evaluate both the periodic fundamental pattern extracted with
the projection model in 2.6 and the one obtained with the
optimal commonly used modified cosine model13,14 to con-
trol the movement of the treatment plan. The modified cosine
model assumes that the breathing trajectory conforms to the
following formula:

z�t� = z0 − a cos2n��t/� − �� , �2.11�

where z0 ,a ,n ,� ,� are assumed to correspond to exhalation
position, motion amplitude, asymmetry degree, period, and
phase offset, respectively, and are parameters to be opti-
mized; z�t� represents the breathing trace index by time.

Dose error, PTV margin, and 95% dose coverage are com-
pared against RMSE in both setups to demonstrate the cor-
relation.

Second, we compare the projection-based model with the

modified cosine model �2.11� to test the feasibility of the
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obtained fundamental pattern. RMSE as well as dose error,
PTV margin, and 95% dose coverage are used for this com-
parison.

Third, we illustrate the potential clinical use of the pro-
posed method to predict motion induced by respiration. We
partitioned the breathing trace into two parts: a training part
of duration 20 s and a testing part of duration 10 s. For each
breathing trace, the projection model is learned with the
training trajectory only, and it is used to “predict” the breath-
ing behavior for the testing portion. This is essentially a test
of temporal variance.

III. RESULTS AND DISCUSSION

Figure 1 shows one patient data set to illustrate the role
Fourier-initialization plays in avoiding suboptimal local
minima. An exhaustive evaluation for RMSE was carried out
over a large range of candidate periods in Fig. 1�a�. Figure
1�b� illustrates the nonphysiological optimal obtained with-
out proper prior information, for the reason we discussed
previously: harmonic analysis has an inherent bias toward
large period. Figure 1�c� shows that initializing with peak
location of Fourier spectral �in this example corresponding to
T=4.3 s� helps to correctly capture the physiologically sound
optimal period and enables us to restrict the period search to
an even smaller candidate set for further computation effi-
ciency.

To validate the correlation between the RMSE and the
clinically critical metrics, we plot the performance character-
istic parameters �dose error, PTV margin, 95% dose cover-
age� versus RMSE in Fig. 2 for both projection model based
motion compensated treatment and modified cosine model
based motion compensated treatment. Quantitative results
are listed in Table I. In both treatment plan simulations, dose
error and PTV margin demonstrate an increasing trend as
RMSE becomes larger while the 95% dose coverage de-
creases. This validates the soundness of using RMSE as the
index for “performance indicator.”

Moreover, we carry out a comparison between the
projection-based model with the commonly used modified
cosine model described in Eq. �2.11�. Figure 3 shows the
RMSE of the best fit modified cosine model versus the pro-
posed index �RMSE derived from projection model�, and it
demonstrates that not only does our index capture how well
the signal can be approximated by a well-recognized physi-
cal model, but the fundamental pattern obtained via the pro-
jection model uniformly outperforms the modified cosine
model in the LSE sense. For further clinically meaningful
justification, we calculate the performance characteristic pa-
rameters corresponding to a modified cosine model in Table
I, and we can observe that our projection model yields lower
RMSE, dose error, PTV margin, and higher dose coverage
than the modified cosine model overall �Fig. 3�. Furthermore,
the problem of fitting the data to the model described by Eq.
�2.11� is higly nonconvex with respect to its parameters
which incurs two issues: it is extremely sensitive to initial-
ization due to the numerous local minima; and it is compu-

tationally expensive as a nontrivial high dimensional search
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problem. In contrast, the proposed projection approach offers
a closed form solution for the inner optimization problem in
Eq. �2.5� and is thus simplified to a one-dimensional line
search, it has an obvious advantage in computation efficiency

FIG. 1. Proper initialization helps to avoid suboptimal �nonphysical� local
minimum: �a� Exhaustive evaluation of RMSE for difference candidate pe-
riods; �b� estimated pattern at T=8.2 s, this is nonphysical even though it
corresponds to slightly better fitting in RMSE sense; �c� estimated pattern at
T=4.1 s, the physiologically sound optimal period.
over the modified cosine model.
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To further justify the above-mentioned claims, Fig. 4
shows some of the fitted trajectories with “optimal” cosine
model parameters with their counterparts from the
projection-based approach. The fundamental patterns ob-
tained by the projection method do indeed offer a better

FIG. 2. Clinical significant performance metrics vs Root Mean Squared Error
PTV margin �cm�; �c�#�� 95% dose coverage. Different motion models for co
model �treatment beam trajectory described as linear combinations of harm
match than the cosine model. This is a result of the intrinsic
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“nonparametric” nature of the projection based approach.
Described as a linear combination of harmonics, the funda-
mental pattern has essentially �2K+1� degrees of freedom
where K is determined by the imposed band limit of the
physical signal. The modified cosine model, on the other

SE�. Different metrics are indicated with letters ��a#�� dose error �%�; �b�#��
ing the treatment beam are indicated with numbers: �X�1�� projection based
; �X�2�� modified cosine model.
�RM
nmov
hand, has explicitly assumed no more than 5 degrees of free-
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dom, which has restricted its descriptiveness. For the same
reason, our method imposes no symmetry on the fundamen-
tal pattern; in particular, the trajectory of inhalation does not
have to be the inverse of exhalation, unlike the modified
cosine model.

A “good” fit of the breathing trace with a periodic pattern
is obtained �low RMSE by the proposed irregularity index�
indicating that the breathing trace under examination is
highly regular, and vice versa. Similar argument holds for the
relationship between “bad” fit �high RMSE� and high irregu-
larity. Instead of examining the combination of a whole
bunch of quantities, such as standard deviation of amplitude,
mean positions, periods of breathing cycles, etc., this single
number �the RMSE� serves as the irregularity index, since it
is designed specifically for this purpose. Therefore, observ-
ing a low RMSE increases the confidence and feasibility for

FIG. 3. RMSE, dose error �%�, PTV margin �cm�, 95% d
potential dynamic treatment for the mobile target. In particu-
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lar, synchronized moving aperture radiation therapy15 and
similar motion compensation based treatment schemes are
potentially applicable. Moreover, the fundamental pattern,
which is obtained as a free side-product during the process of
estimating period and computing the irregularity index, is a
good indicator of what the radiation beam pattern should be,
serving the same purpose as average tumor trajectory �ATT�
introduced in Ref. 15. In other words, it can be regarded as
an alternative derivation of ATT without having to examine
individual cycles too closely. A potential merit of the pro-
posed method for extracting ATT is that it is much less sen-
sitive to additive noise due to its global nature—every
sample on the observed-breathing trace contributes to the
estimation of the fundamental pattern.

To show the potential application of the proposed projec-
tion based scheme to predict target motion, we derive the

overage of modified cosine model vs projection model.
ose c
fundamental pattern with the first 20 s of breathing trace �the
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training portion� and apply it to the remainder of the data—
the next 10 s of breathing trajectory is called “testing por-
tion” since it is not seen by the projection model. We illus-
trate some examples in Fig. 5. The irregularity indexes

FIG. 4. Left column: projection model vs true trajecto
derived from the learning portion, the corresponding optimal

Medical Physics, Vol. 33, No. 7, July 2006
period, and the evaluation of its fit to the ground-truth tra-
jectory for the testing portion using RMSE are provided in
Table I.

The quality of the prediction depends on how repetitive

ght column: modified cosine model vs true trajectory.
the true breathing trajectory is, which again can be measured



2498 Ruan et al.: Exploring breathing pattern irregularity with projection-based method 2498
by the proposed regularity index. When we examine closely
the RMSE computed from training portion and test portion,
we will see that the latter is uniformly larger, which is ex-
pected �since optimization is applied only to training data�.
Moreover, when we examine across cases, there is a positive
correlation between RMSE computed during training and

FIG. 5. Prediction of breathing trajectory with projection model.
RMSE computed from testing. This indicates RMSE during
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recent historical trajectory is a good predictor for RMSE, and
thus irregularity level for near future. Generally, being a glo-
bal regularity measure, the proposed index may not capture
time varying properties of the breathing signal. This limita-
tion can be overcome by applying the proposed method to
smaller sliding time intervals instead of the whole trace.

Despite this limitation, the projection model based predic-
tion appears to provide reasonable predictions within ap-
proximately a 2 s response window given a sufficiently regu-
lar breathing trace. Even though this number is significantly
larger than the 0.4 s discussed in Ref. 9, we are not claiming
that the proposed algorithm is preferable to adaptive filtering,
since regularity in breathing trace is a pretty stringent as-
sumption. Modeling of free form breathing is a hard and
unsolved problem in general. It is often desirable to have a
simple and descriptive model even if some conditions need
to be checked in the first place. Moreover, the proposed ir-
regularity index is a convenient tool for such a sanity check.
By examining this single index, we can determine whether
the breathing trace is regular enough for the periodicity as-
sumption to hold, hence the corresponding prediction or syn-
chronized motion compensation with ATT may be applied.

IV. CONCLUSIONS AND FUTURE WORK

We have derived a general framework to find the closest
periodic signal that best matches the temporally sampled ob-
servation of breathing trajectory. Experimental results have
shown good consistency with physical knowledge and clini-
cally critical parameters as dose percentage error, PTV mar-
gin, and 95% dose volume. Comparison between the popular
modified cosine breathing model and the projection-based
approach shows that being consistent with the residual error
from fitting the modified cosine model, our approach offers
additional computation efficiency and robustness in the opti-
mization process. Furthermore, we get the fundamental
breathing pattern which helps to justify the soundness of the
results and can serve as a valuable reference in further treat-
ment planning. Potential applications of the fundamental pat-
tern to dynamic motion compensation and prediction are il-
lustrated with preliminary experiments. It is also likely that
knowledge of the periodic signal can aid in reconstruction of
four-dimensional computed tomographic models.

In this study, we have focused on finding the optimal pe-
riodic signal in the LSE sense. As future work, we would like
to investigate alternative metrics that are potentially more
tolerant to transient pathological breathing patterns. Also, for
a particular treatment planning scheme, some choice of
matching metrics could be more suitable than others, and the
design of plan-dependent irregularity indexes would be inter-
esting. Finally, we have used in this study the RMSE result-
ing from the projection method as an irregularity index. Po-
tential variants, for instance, a normalized version, may be
more desirable in some applications.
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