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Abstract

Proper orthogonal decomposition (POD) has been widely realized as a tool for compressing

fluctuating building pressure data in wind-engineering area. Modes are determined by eigen

decomposition of data covariance matrix, and then truncation is applied to retain only the modes

with the highest energy. However, as observed by S. Kho, C. Baker, R. Hoxey [Pod/arma

reconstruction of the surface pressure field around a low rise structure, J. Wind Eng. Ind. Aerodyn.

(90) (2002) 1831–1842] and analyzed in the authors’ previous paper D. Ruan, H. He, D. Smith, K.C.

Mehta [A Semi-optimal Mode Selection Scheme for Pod Based Compression of Wind Field Data,

Seoul, Korea, 2004], reconstruction performance varies a lot among individual taps. In D. Ruan, H.

He, D. Smith, K.C. Mehta [A Semi-optimal Mode Selection Scheme for Pod Based Compression of

Wind Field Data, Seoul, Korea, 2004], a semi-optimal mode choosing scheme was proposed in an

integer programming (IP) framework and numerical experiments have shown sound results.

Nevertheless, computation cost for solving IP optimization could be an issue as the total number of

taps grows. In this paper, we address the problem with normalized proper orthogonal decomposition

which is from a completely different perspective: we first normalize the data to force every tap to have

similar contribution to the total energy; the standard POD is then applied to get a compact

representation. During the reconstruction phase, normalized data is first restored and a scaling

procedure which is exactly the inverse to the normalization is applied to finally reconstitute the data
see front matter r 2006 Elsevier Ltd. All rights reserved.
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in its original form. Feasibility test with experimental data from Texas Tech University yields good

results. Computation cost is almost the same as the standard POD method.

r 2006 Elsevier Ltd. All rights reserved.

Keywords: Data compression; Proper orthogonal decomposition (POD); Principal component analysis (PCA);

Eigendecomposition; Normalized cumulative fluctuation energy (NCFE); Integer programming (IP); Normalized

proper orthogonal decomposition (NPOD)
1. Introduction

Principal component analysis (PCA) is a powerful tool in compact data representation/
data compression. Beginning with a data set in a high-dimensional space, PCA tries to find
a lower dimensional hyperplane that best represents the data points. In wind engineering
field, it is generally recognized as proper orthogonal decomposition (POD) and is widely
studied to describe fluctuating building surface pressure data [3–8]. Some authors have
tried to fit autoregressive (AR) model to extracted POD modes [9,10] in order to achieve
further compression. While some investigators [4,3] claimed that this decomposition helps
in identifying the hidden systematic structure in the pressure fluctuation, other parties
argued [11], that the most useful aspect of POD is its economy in describing the spatial/
temporal variation of wind pressure field [12–14].
In traditional POD-based compression methods, the covariance matrix of the

observation data is first eigendecomposed to get the set of eigenvectors (modes). The
modes are then arranged in an energy non-increasing fashion and truncation is applied to
retain only a subset of them. However, as Kho et al. [1] observed, the exclusion of higher
(less energetic) modes leads to significant inaccuracy of reconstituted time series at some of
the tapping points.
In the authors’ previous work [2], contributions of each mode to the fluctuation energy

at individual tapping points are analyzed, and an IP framework is proposed to choose a
subset of the eigenvectors after eigendecomposition for reconstruction purpose. However,
the solutions to IP optimization problems are not trivial and the computation cost grows
with the number of taps included.
In this work, we take a completely different perspective by taking advantage of proper

normalization. We avoid the unbalanced performance in the traditional POD-based methods
by first normalizing the observation data to make each tap contribute similarly to the total
energy. This results in a decomposition that assigns similar weight to each dimension of data
(each tap). In the compression step, only the first few normalized modes are retained as in
traditional POD. During the reconstitution process, normalized data are first restored
according to the traditional POD approach, then a scaling procedure which plays the role of
inverse normalization is applied and transforms the normalized data to its original space.
Feasibility test and verification is conducted using experimental data collected at wind

engineering research field laboratory (WERFL) at Texas Tech University.

2. Proper orthogonal decomposition (POD)

POD, which is also known as PCA in statistics and signal processing is a well-established
technique for dimension reduction. The most common way to look at POD is in terms of
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an orthogonal projection which maximizes the variance in the projected space. Given an
dyadic N-dimensional observation vector xðtÞ, POD aims at finding an orthogonal linear
projection y ¼WTx1 such that the variance of y 2 RM

ðMoNÞ is maximized. The ith
element of y is called the ith principal component.

From an optimization point of view, POD minimizes the reconstruction error in the
mean square sense, i.e.,

W � ¼ argmin
W

EtkxðtÞ � x̂ðtÞk2, (1)

where x̂ðtÞ ¼Wy is the reconstruction (back projection) in RN from the projected data y. It
could be shown that the ith column vector of W �2 corresponds to the normalized eigenvector
associated with the ith largest eigenvalue of the covariance matrix Rx ¼ EfxxTg.

In the scenario of building pressure data, observation data in original (high) dimension
is acquired by stacking the simultaneous measurements from all taps at each time instant.
Technically, let xði; tÞ be the measurement at tap i at time t with i ¼ 1; 2; . . . ;N where N is
the total number of taps. The original data lies in a space whose dimension is determined
by the number of taps.

3. Normalized proper orthogonal decomposition

The motivation of normalized proper orthogonal decomposition (NPOD) comes from
the desire to give each dimension of observed variable (in our case, each tap) similar weight
in the decomposition process. In traditional POD method, the principal modes come from
eigendecomposition of the variance matrix, which is scale variant, i.e., principal modes
change when some dimension of the original observation is scaled. A direct result of this in
the application of POD to surface field pressure data is that data from windward taps
receive more attention than leeward taps as pressure data from windward taps in general
have larger variance than leeward ones. From a data processing point of view, this means
different dimensions of pressure data are heterogeneous with respect to their variance and
this leads to the unfair reconstruction performance observed in [1,2].

In NPOD method proposed in this paper, we first normalize the data by subtracting the
mean and then dividing by square-root of the variance at each dimension so that each
dimension is now standardized with zero mean and unit variance. Using this normalized
data as the input to traditional POD system guarantees each dimension to receive similar
weight in the decomposition. In the reconstruction process, the normalized data is first
reconstructed from lower dimension data and then approximation of raw data is acquired
by inverse scaling and proper shifting as illustrated in Fig. 1.

4. Experimental setup and data acquisition for feasibility test

Experimental data from the WERFL at Texas Tech University are used to carry out
both feasibility test and verification examination in this paper. WERFL is used to conduct
full-scale measurements of wind and its effects on buildings. It consists of a 160-ft high
meteorological tower, a rotatable 30� 45� 13 ft test building, and a 10� 10� 8 ft data
acquisition room. The test building is anchored to a rigid frame undercarriage, which is
1The superscript (T) in this paper denotes transpose of matrix.
2We use superscript asterisk (*) to denote the optimal value of the objective in this paper.
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Fig. 1. Data flow of NPOD.

Fig. 2. Layout of tapping points. In later discussions, we may use eastward indexing of the tapping points for

expression convenience where no confusion is expected. ðG2! tap1;G3! tap2; . . .Þ.
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supported by hydraulic jacks at each corner. The jacks are mounted on wheels which ride
on a circular rail. This setup allows researchers to raise and rotate the building to any
direction as desired [15,16].
204 pressure taps are installed outside of the test building on the roof and walls (Fig. 9).

In the feasibility test, we use the observation data from 11 tapping points located across the
central frame of the building (Fig. 2) during test Run M15N541, measured at 40Hz for
15min, i.e., 15min�60 s=min�40Hz ¼ 36; 000 wind pressure data are recorded for each
tapping point.
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5. Numerical results

5.1. Heterogeneous data w.r.t. variance

The heterogeneous nature of the wind pressure field data is shown in Fig. 3. In fact, the
ratio of the largest variance versus the smallest variance among taps in this demonstration
case is more than 31, which means a ‘‘stretching factor’’ of about 5:57 in some dimension
with respect to some other.

5.2. Results from POD

Here we present the computation results of POD. Fig. 4 shows the magnitude of all
eigenvalues calculated from POD. It demonstrates the fast decaying behavior of the
eigenvalues, which suggests the concentration of energy amongst the first few modes. Fig. 5
offers an even more straightforward observation. We computed the normalized cumulative
fluctuation energy (NCFE) up to the nth mode by NCFEðnÞ ¼

Pn
i¼1 li=

PN
i¼1 li. As a

function of n which is the number of ordered eigenvalues incorporated, NCFE converges
fast which shows the concentration of energy amongst the first few modes. In particular,P5

n¼1 NCFEðnÞ ¼ 0:9083, i.e., modes 1–5 cumulate 90:83% of the total fluctuation energy,
which in the traditional way, suggests that using modes 1–5 for reconstruction should be
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Fig. 6. (a) Variance from reconstructed fluctuation pressure coefficient versus variance from original pressure

coefficient, and (b) reconstruction performance measured by variance ratio ri.
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satisfactory. In the following comparisons, we fix the number of modes retained after
compression M to be 5.
It could be observed from Figs. 7(a), (b) that although POD has performed its role of

coordinate transform well, the degree that the spectra of reconstructed pressure coefficient
resemble original data varies among taps.
As discussed in detail in Ref. [2], the unbalanced reconstruction performance at

individual taps is due to the fact that POD is completely energy concentration oriented. As
a direct result, the first few principal modes favor directions dominated by taps with larger
variance. In return, those modes hardly represent the information that is carried by other
taps, which results in poor reconstruction performance for these ‘‘inferior’’ taps. We show
the quantitative performance evaluation in Fig. 6 below. The reconstruction performance
at each tap is measured quantitatively by the ratio between variance of reconstructed signal
and original signal, i.e., ri ¼ varðx̂iÞ=varðxiÞ with i being the tap number, xi and x̂i being the
original pressure data sequence and reconstructed pressure sequence respectively.
Indeed, the traditional POD method does capture the main energy concentration, but

fails to offer a fair representative description for each tap point.
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5.3. Results from NPOD

Discussion from previous sections has revealed the reason for unbalanced reconstruction
performance at different taps. Taps with higher energy play dominant roles in the selection
of modes and taps with relative low energy tend to be neglected in the mode selection
process. Since the pressure coefficients at all taps should be reconstructed similarly well, we
apply normalization at the first place to compensate for this biased behavior.

Normalization of the raw observation is done by removing the mean and scale the data
into unit variance at each dimension (each tap).

ziðtÞ ¼
xiðtÞ � EðxiðtÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EðxiðtÞ
2
Þ

q (2)

for i ¼ 1; 2; . . . ;N. Traditional POD is then applied to the modified data and only the first
5 principal components are retained for reconstruction. Let W be the N �M matrix (in
this case N ¼ 11; M ¼ 5) such that each column of W is the eigenvector of the covariance
matrix of Z.

The compression is done by

Y ¼WTZ (3)

or equivalently for j ¼ 1; 2; . . . ;M,

yjðtÞ ¼
XN

i¼1

W i; jziðtÞ. (4)

In the reconstruction process, the modified data is first estimated via

Ẑ ¼WY (5)

or ẑiðtÞ ¼
PM

j¼1 W i; jyjðtÞ for i ¼ 1; 2; . . . ;N. The mapping of modified data Z back into raw
data space is done by simply inverting the previous normalization process. Mathematically,

x̂iðtÞ ¼ ẑiðtÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðEðxiðtÞ

2
ÞÞ

q
þ EðxiðtÞÞ, (6)

where the first- and second-order statistics of xi are previous stored quantities from
compression step.

Reconstruction results from proposed NPOD method are shown below together with
that from traditional POD-based method, both with the first (corresponding to the highest
energy) 5 modes, in Fig. 7. We also demonstrate the reconstruction results quantitatively in
Fig. 8 by comparing the variance of the reconstructed data versus the original data.
Comparison between Figs. 6 and 8 clearly shows that NPOD offers a much better trade-off
performance among taps.

6. Verification with more general data source

In previous section, we have shown that NPOD outperforms traditional POD method in
the sense of fair reconstruction with the same pre-chosen number of modes. However, it is
not obvious how sensitive this superiority behavior is with respect to the number of modes
we use, i.e., if we use more/fewer number of modes, will the relative performance change?
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Fig. 7. Fluctuating pressure coefficient spectra at taps G3, G15, G8, G9 (labeled as tap 2, 6, 9, 10, respectively, in

numerical analysis): (a) original data, (b) POD reconstructed fluctuating data and (c) NPOD reconstructed data.
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Fig. 8. (a) Variance of reconstructed fluctuation pressure coefficient vs. variance of original pressure coefficient

and (b) reconstruction performance measured by variance ratio ri.
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In this section, we exhaustively operate with each possible number of modes and show that
NPOD method almost always outperforms POD approach. In other words, it is almost
always true that NPOD dominates POD.
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6.1. Verification experiment setup

For verification purpose, wind pressure field data from all 204 taps, which are closer to
data structure in real applications are used. The allocation of tapping points are indicated
in Fig. 9. Shaded points are where further comparison of power spectra reconstruction
levels are to be conducted. The mean attacking angle of incident wind in this run is 270:4�

with respect to building north. Other setups are identical to the feasibility test situation.

6.2. Numerical results

It can be observed from Fig. 10 that the energy distribution with respect to the tap
location confirms the physical fact that taps on the windward slope have in general higher
energy than leeward taps.

As before, we arrange eigenvalues in a non-increasing fashion and their corresponding
eigenvectors yield modes in traditional POD method with decreasing significance (Fig. 11).

For each possible choice of total mode number for reconstruction, we apply both
traditional POD and proposed NPOD. The metric we use to measure performance is the

average fluctuation energy reconstruction ratio, i.e., r̄ðMÞ ¼
PN

i¼1 riðMÞ
� �

=N. Notice that

reconstruction procedure are repeated for M ¼ 1; 2; . . . ;N number of modes, and
Building North

Mean Attack Angle = 270.4° 

586164677073767982

596265687174778083

606366697275788184

555657184183182181180204203202201878685

525354179178177176175200199198197908988
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Fig. 9. Tap layout in the verification experiment.
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reconstruction performance is a function of M. It is obvious from Fig. 12 that the
proposed NPOD method almost always outperforms the traditional POD approach in the
sense of average energy reconstruction ratio.
To justify that the average energy reconstruction ratio is indeed a reasonable metric and

thus the proposed NPOD approach is a sound one, we take a closer look at the



ARTICLE IN PRESS

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Tap Index

R
ec

on
st

ru
ct

io
n 

R
at

io
Rconstruction Ratio with 20 Modes

reconstructin ratio for POD
reconstruction ratio for NPOD

Fig. 13. Comparison of reconstruction level between traditional POD (solid dots) and proposed NPOD (up

triangles) with 20 modes.

D. Ruan et al. / J. Wind Eng. Ind. Aerodyn. 94 (2006) 447–461 457
reconstructed power spectra in case where a total of M ¼ 20 modes were used for
reconstruction. In fact, the choice of M could be any number between 1 and N. We choose
M ¼ 20 as it is a sound one in traditional POD setup.

In Fig. 13, we show the energy reconstruction ratio rið20Þ for each individual tap
i ¼ 1; 2; . . . ;N. We can see that NPOD-based reconstruction not only has a more balanced
(flat) distribution of reconstruction ratio among different taps, but also higher than POD-
based method in general. Particularly, NPOD-based reconstruction has a higher lower
bound (worst case performance) than POD-based method. Another interesting observa-
tion we can make by looking at Fig. 10 (which we reproduced in the bottom of Fig. 13 for
convenience) and POD reconstruction ratio (solid dots) alone in Fig. 13 is that the POD-
based method shows a strong-biased performance favoring higher energy taps and tends to
ignore taps with relative lower energy, which confirms to our earlier analysis about the
blind energy-concentration oriented property of POD.

Reconstruction results for fluctuation pressure coefficient spectra also demonstrate the
soundness of NPOD approach as in Fig. 15.

6.3. Robustness test

By balancing the reconstruction ratio among all taps, NPOD does compromise the
performance to some degree at the taps with higher energy (windward taps in general). One
may wonder what would happen if there are relatively more windward taps used in the
decomposition.

Notice that actual physical locations of the taps are transparent to the POD method.
The decomposition only looks for the coordinate that best concentrate the energy.
Similarly, NPOD only cares about the relative energy distribution and makes
corresponding adjustment by proper scaling. In other words, NPOD favors reconstruc-
tions at taps with relative lower energy, but not necessarily deteriorates performances for
taps with absolute high energy. To justify this argument, we exclude taps on the north,
south and east walls (tap numbered 1 to 84 in Fig. 9) from The experiment data set and
carry out the POD/NPOD compression/reconstruction with 20 modes as before. Note that
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we expect the reconstruction ratio with the same method (either POD or NPOD) to be
higher than the original test using data from all taps since we are asking for a lower
compression rate at this time. The comparison is shown in Fig. 14.
The experiment results agree with our analysis in that NPOD outperforms POD in

general, and in particular, shows an obvious advantage in reconstructing taps 135–184
which corresponds to the far side of roof (Fig. 9) and less energetic taps shown in Fig. 10.
Reconstruction performance on other taps are comparable between POD and NPOD
(Fig. 15).

7. Interpretation of NPOD

It can be shown that POD is the optimal solution to the optimization problem
minEtkxðtÞ � x̂ðtÞk2. If a perfectly balanced reconstruction quality at all taps, i.e., ri ¼

rj 8i; j 2 ð1;NÞ is desired, a scaled optimization problem min
PN

i¼1 ððxi � x̂iÞ=xiÞ
2 needs to

be solved. The proposed NPOD method could be looked on as an effort to approach an
approximation to such a solution.
One may wonder whether there exist physical interpretations of NPOD that could

possibly associate the NPOD pressure modes with the underlying flow phenomena. As
NPOD is a normalized variant of the classical POD method, whose physical interpretation
is yet open to wide discussion [3,4,6,11], we would like to pose NPOD in a similar way: we
are not excluding the potential of possible physical interpretations of NPOD pressure
modes but we do believe any conclusive statement requires extensive justification and
careful analysis.
In particular, we agree with Holmes et. al [11] in that orthogonality condition is the most

dominating factor in shaping modes in POD-based approaches, and any analysis
associating the modes to physical causes needs careful justification with extensive flow
measurements as well as deep understanding of the underlying flow dynamics.
On the other hand, we would expect the modes to exhibit similar behaviors as those of

POD. Of course, due to proper normalization, NPOD modes have a more balanced
distribution across the taps than original POD modes. Given these properties, we believe
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Fig. 15. Fluctuating pressure coefficient spectra at taps 8, 20, 41, 65, 77, 101, 133, 157, respectively: (a) original

spectra, (b) POD-based reconstructed spectra and (c) NPOD-based reconstructed spectra.
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that any sound association of the POD modes to the underlying flow phenomena (if any)
would conveniently export to that of NPOD, even though we are not claiming any
particular benefit of using NPOD in this perspective.
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8. Conclusions and future work
(1)
 Although the most energetic POD modes account for the majority of fluctuating
energy, tapping points with lower variance are very likely to be under-represented by
only the first few most energetic POD modes. Reconstruction from those modes only
leads to substantial error at those tapping points.
(2)
 The NPOD method proposed here provides a more balanced reconstruction
performance among all taps. It also provides higher lower bound on the reconstruction
ratio of all taps. Computation cost is comparable to traditional POD-based method as
computing scaling factor is trivial (and actually could be done iteratively when data set
is extremely large).
(3)
 NPOD could be interpreted as an approximation to a scaled optimization problem.

(4)
 Planned future work will be in the temporal compression of time functions (yiðtÞ’s).

More systematic construction of ARMA models (joint structural and parametric
optimization) will be investigated. Wavelet transform facilitated approaches will be
further explored.
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