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Abstract
Recent developments in modulation techniques enable conformal delivery of
radiation doses to small, localized target volumes. One of the challenges in
using these techniques is real-time tracking and predicting target motion, which
is necessary to accommodate system latencies. For image-guided-radiotherapy
systems, it is also desirable to minimize sampling rates to reduce imaging dose.
This study focuses on predicting respiratory motion, which can significantly
affect lung tumours. Predicting respiratory motion in real-time is challenging,
due to the complexity of breathing patterns and the many sources of variability.
We propose a prediction method based on local regression. There are three
major ingredients of this approach: (1) forming an augmented state space
to capture system dynamics, (2) local regression in the augmented space
to train the predictor from previous observation data using semi-periodicity
of respiratory motion, (3) local weighting adjustment to incorporate fading
temporal correlations. To evaluate prediction accuracy, we computed the root
mean square error between predicted tumor motion and its observed location for
ten patients. For comparison, we also investigated commonly used predictive
methods, namely linear prediction, neural networks and Kalman filtering to the
same data. The proposed method reduced the prediction error for all imaging
rates and latency lengths, particularly for long prediction lengths.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Current developments in radiotherapy such as cyberknife and intensity-modulated-
radiotherapy (IMRT) offer the potential of precise radiation dose delivery for moving objects.
Accurate target volume tracking is necessary for conformal treatment plans to fully utilize their
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capacity. Image-guided radiotherapy needs to consider system latencies resulting from image
acquisition, communication delay, data processing and mechanical processing. For treatment
over multiple fractions, or long procedures, the diagnostic radiation dose can be significant,
so it is desirable to reduce the image acquisition rate. To address this issue, hybrid tumor
tracking approaches that combine episodic radiographic imaging and continuous monitoring
of external surrogates have been investigated (Ozhasoglu and Murphy 2002, Murphy 2004,
Schweikard et al 2000, 2004, Murphy et al 2002). There are two active areas of research
related to hybrid tracking: (1) study of feasibility and effective use of external surrogates
(including the placement mechanism) such as thermistors, thermocouples, strain gauges,
pneumotachographs and infrared skin markers (Ahn et al 2004, Keall et al 2006, Vedam
et al 2003, Hoisak et al 2004, Tsunashima et al 2004, Koch et al 2004, Mageras et al 2004);
(2) prediction algorithms (Vedam et al 2004, Sharp et al 2004, Wu et al 2004). In particular,
even if perfect information about the current state is assumed, the lag between observing
tumor location and treatment delivery still necessitates having predictors that can ‘look ahead’
enough, yet behave reasonably well even for relatively low input sampling frequencies.

This study belongs to the second category where we are interested in predicting target
motion located in the lung area or its vicinity. Such motion is mainly caused by breathing,
and exhibits semi-periodicity as observed in normal breathing signals. This is a very active
research area (Sharp et al 2004, Gierga et al 2004, Jiang et al 2003, Vedam et al 2004). The
semi-periodic structure of the breathing signals make explicit modeling challenging, since
parametric models often fail to capture local variations. On the other hand, overly flexible
models that depend only on temporally local information fail to use correlated historical
information. Among the most investigated methods are linear predictors with various covariate
lengths, neural networks and Kalman filters (KFs).

We propose a prediction method based on local weighted regression. Adopting a classic
approach in modeling dynamical systems, we first generate an augmented state with the most
current observation and one or more preceding samples. This augmented state is designed
to capture the local dynamics about the time point of interest, and it is used as the covariate
for the predictor system. For a pre-specified ‘look-ahead’ length, the target response pattern
of the predictor is obtained from the training data. These state–response pairs form a scatter
plot in a high-dimensional space where we apply locally weighted regression. Intuitively, the
predictor infers its response map from the behavior of its neighbors in this state space, since it
is probable that they are. The regression weights are designed to reflect the ‘distance’ between
the state of interest and the training samples.

For the purpose of real-time tracking and prediction, we adaptively adjust the inference
weights to incorporate the decaying temporal correlation among response patterns with longer
time lags3.

We discuss the proposed methods in detail in section 2. The method is applied to clinical
real-time position management (RPM) data (RPM Varian Medical System, Palo Alto, CA)
that is described in section 3. We report the test results and the comparison to alternative
methods in section 4. Finally, we discuss future directions in section 5.

2. Methods

In this section, we propose a prediction method based on locally weighted regression. For
simplicity, we describe the model in terms of scalar locations, i.e. 1D observation. The
extension to vector observation is straightforward. Section 2.2 first introduces a primitive

3 In fact, this corresponds to augmenting the state with the time index as an extra dimension.
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version that ignores the change of temporal correlation with time lag, and sections 2.3.2 and
2.3.3 extend it to include time indexing.

2.1. Model setup and general notations

Let the continuous scalar function f : � → � denote a motion index signal. At time instant τ ,
we are given a set of discrete samples {si = f (t (i)), i = 1, 2, . . . , k} of the breathing
trajectory prior to τ , with t (k) < τ . For simplicity, we assume that the observed signal
is sampled uniformly with frequency ψ Hz, i.e. t (i + 1) − t (i) = 1/ψ . We assume
that the look-ahead length is an integer multiple of the sampling interval 1/ψ seconds,
and for later convenience, we represent it in the discrete unit, i.e. a look-ahead length L
indicates a L/ψ seconds prediction. We use p to denote the state dimension used to capture
system dynamics. To draw an analogy to an ordinary differential equation (ODE) based
system, p = 2 corresponds to a first-order difference system with location and approximate
velocity, and p = 3 corresponds to a second-order difference system with the addition
of acceleration.

2.2. Basic local weighted regression

At current time instant τ , the available observations are s1, . . . , sK , where K � τ × ψ . Then
for any i � K − L we construct length p state vector xi = [si−(p−1)�, . . . , si], and response
variable yi = si+L. The parameter � is an integer that indicates the ‘lag length’ used to
generate the augmented state. It should be chosen to properly reflect system dynamics: small
lags are more sensitive to dynamical change as well as noise; big lags are more robust to
the presence of noise yet average out the system dynamics at the same scale. The set of
hyper-pairs (xi ,yi ) form a scatter plot in the p + 1 dimensional space. Assuming that the
state thus constructed conveys all the information about system dynamics, then the scatter plot
summarizes the noisy realizations of the prediction map: g : �p → �:

ŷi = g(xi ), (1)

where the predictor g is a smooth function. This is a reasonable model as we do expect the
prediction to vary smoothly with the historical trajectory. Our goal is to predict the target
location at time (τ + L/ψ) seconds, which is equivalent to estimating ŷK .

Respiratory motion is not stationary, in fact, both the system dynamics and its local
statistics vary in a semi-periodic fashion. Unfortunately, most existing methods in estimating
the prediction map g fail to take this ‘phase-dependent’ phenomenon into account, with
the exception of (Ruan et al 2003) and (Wu et al 2004) where a discrete set of stage-wise
models are constructed and updated adaptively. The idea is to train (or infer) a predictor
at a given state with (only) those historical data samples that behave similarly or, vaguely
speaking, belong to a similar respiratory stage. Yet the existing stage-wise models require
pre-determining the number of discrete stages and often involve segmentation-based training.
To circumvent these difficulties, we hereafter provide a means to locally estimate g in the state-
space neighborhood of xK , based on local regression (LOESS) from nonparametric methods
in the statistical literatures (Cleveland 1979).

Let r be a pre-determined constant4 that specifies the size of the neighborhood whose
members affect the estimate in the scattered (p + 1)-dimensional space. Let hK be
the distance from xK to the rth nearest neighbor in terms of Euclidean distance in the
p-dimensional subspace, i.e. hK is the rth smallest number among the distances between
xi , i = 1, 2, . . . , K − L, and xK . Let κ(·) be a symmetric kernel function that satisfies
4 Equivalently, it could also be specified as a ratio with respect to the total number of data points.
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Figure 1. State space distance and local regression weight assignment. Upper subfigure:
illustration of prediction quantities with first-order dynamic xi = [si−�, si ], current data point sK ,
prediction location yK = sK+L, available covariant–response pair (xi , yi )i�K−L; lower subfigure:
distance map (blue dash-dot line) in the state space di = ||xi −xK || and inferred regression weights
wi (green solid line).

(i) κ(x) > 0 for |x| < 1 and κ(x) = 0 for |x| � 1,
(ii) κ(−x) = κ(x),

(iii) κ(x) is a non-increasing function for x � 0.

We select local inference weight according to

wi = κ
(
h−1

K ||xi − xK ||). (2)

Figure 1 illustrates the idea of weighting based on distance in state space. For simplicity, one
delay tap is used (p = 2), so the state xi = [si−�, si]. The goal is to estimate the response yK

for current state vector xK , from available covariate–response pairs (xi ,yi ) for i � K − L.
Note that K − L < i � K are not used in the regression, since their response values yi are
not yet available at time instant K. Distances between current states xK and xi are computed
and the kernel function is used to determine the regression weights wi as in (2). The assigned
weights emphasize those training samples that share similar dynamics as the current state of
interest as shown in the lower part of figure 1.

We subsequently estimate g locally using a polynomial of degree d, i.e. we use a predictor
of the form g(x) = ∑Q

q=1 βqzq(x), where Q = (d + 1)p and zq(x) = ∏p

j=1 x
dj

j and
(d1, . . . , dp) ∈ {0, 1, . . . , d}p that corresponds to the base-d representation of q.

We estimate the coefficients of the local polynomial by minimizing the weighted local
squared error:

β̂ = argmin β

K−L∑
i=1

wi

⎛
⎝yi −

Q∑
q=1

βqzq(xi )

⎞
⎠

2

= (ZT WZ)−1ZT WY, (3)

where Z is the K − L by Q matrix with elements ziq = zq(xi ). The weighting matrix W is
a diagonal matrix with W(i, i) = wi . Since the local weight w has a limited bandwidth hK
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as designed in (2), there are only r nonzero diagonal elements in the weighting matrix W .
Correspondingly, the outer summation

∑K−L
i=1 can be equivalently written as supported only

on a local neighborhood of radius h, i.e.
∑

i:||xi−xK ||<h. Therefore, the data vectors involved
have length r � K − L rather than K − L. It is desirable to choose a small neighborhood
size r to decrease the computation cost, yet not overly small to sacrifice the regularity of (3),
i.e. the invertibility of ZT WZ.

For subsequent prediction from a given observation xK , we use the estimated polynomial
coefficient β̂:

ŷK =
Q∑

q=1

β̂qzq(xK). (4)

The algorithmic flow chart is as follows.

Algorithm 1 Predict ŷK from (xi ,yi )i�K−L,xK with local regression.

1: Select r (size of regression neighborhood); obtain hK from order statistics of ||xi − xK ||.
2: Select kernel κ and compute regression weights wi according to (2).
3: Compute prediction model coefficients β̂ according to (3). For lag-one state augmentation

with a second-order polynomial prediction model, p = 2, d = 2 and Q = 9, so computing
β̂ requires the inversion of a 9 × 9 matrix ZT WZ and then multiplying it by a 9 × 1
vector.

4: Predict the response ŷK using (4).

2.3. Variations that potentially improve prediction performance

We now describe two design variations that have the potential to improve the prediction
performance: using an iterative weighting scheme to increase robustness to outliers in
regression (section 2.3.1) and dynamically updating the training atlas to account for temporal
variations and/or trends (sections 2.3.2 and 2.3.3).

2.3.1. Robust local weighted regression with iterative weight assignment. It is possible that
the training set based on the state-space distance includes abnormal covariate–response pairs
due to noisy observation or abrupt (and non-repetitive) changes such as a patient coughing,
and thus they may not be ‘representative’ of the predictor pattern for the given state. To help
the local regression method to be robust to such outliers in the (xi ,yi ) pairs, we can diminish
the weight of a sample covariate–response pair whenever it is inconsistent with the smooth
regression from its neighbors. To quantify such inconsistency, we can compare each response
value yi with its predicted value ŷi = g(xi ). Intuitively, the distance between the observed
response yi and its estimate ŷi indicates how different the particular covariate–response pair
behaves than its neighbors. (Cleveland 1979) has suggested a robust weighting scheme based
on a bi-square function B defined as follows:

B(x) =
{
(1 − x2)2, for |x| < 1
0, for |x| � 1.

(5)

Let ei = yi − ŷi be the residual of the observed response from the current fitted value. Let s
be the median of ’|ei | for i = 1, 2, . . . , K − L. Define the robustness weights by

δi = B(ei/6s). (6)
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The original weight wi(xj ) that determines the ‘contribution’ of the ith sample covariate–
response pair in estimating the j th response ŷj is then modified to be wi(xj ) := δiwi(xj ),
reducing the effect of outliers in fitting the other data points. We apply this re-weighting
procedure several times, and use the robust adjusted wi(xK) in place of wi in (3) for estimating
the local polynomial coefficient β̂. This is practical since the δi values involved in adjusting
the local weight depend only on the ith sample fitting quality, and are independent of the
predictor. Plugging β̂ in (4) results in a predicted response value ŷK . Since the estimation
of local polynomial coefficients discounts the effect of outlier samples, the result predictor is
expected to be robust to outlier behavior in the ‘training set’ as well. Note that robust local
regression could be combined with other methods if needed.

2.3.2. Modified weight assignment with exponentially discounted temporal correlation.
Fading memory is present in many natural processes. In breathing trajectories, temporally
adjacent sample points tend to be more similar than the sample points further away from
one another. To incorporate this property in prediction, we adjust the weights by applying
an exponential discount as a function of the temporal distance. Specifically, we modify the
weights as follows:

wi(xj ) := exp(−α|i − j |)wi(xj ). (7)

The positive constant α determines the decaying rate of influence of one sample on
another as their temporal distance increases. As a special case, α = 0 corresponds to no
temporal discounting for the sample contributions, but dynamically adds the new samples into
the training atlas as they become available.

2.3.3. Temporally windowed training samples. Alternatively, we can modify the weights
using a temporal moving window as follows:

wi(xj ) :=
{
wi(xj ) |i − j | < �

0 otherwise,
(8)

where � is the window size. Here, the only samples that are close enough in time contribute
to the local regression with weights determined by (2). The length of the window needs to be
chosen long enough to guarantee enough samples for the local regression.

2.4. Baseline methods for comparison

It is desirable to decrease radiation dose due to imaging in image-guided radiotherapy (IGRT).
This means we would prefer to predict with low-frequency observation samples (small ψ). On
the other hand, it takes time to acquire each observed sample, process it and move the hardware
(linac, MLC or cyberknife) accordingly. Thus, a system capable of large look-ahead lengths
is preferable. These two requirements are challenges in prediction, and trade-offs between
them need to be considered. More specifically, with the look-ahead length determined by the
limitation of the system response, we want to determine the smallest measurement rate that
still guarantees certain prediction accuracy. We will study the performance of the proposed
method when look-ahead lengths and sampling rates are varied, and compare that with some
baseline approaches described as follows.

Following (Sharp et al 2004), we use some commonly used predictors for baseline
comparison. We briefly describe their setups and optimization for free parameters in this
section.
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• Most recent sample
This method simply uses the last sample value:

ŷK = sK.

There are no parameters to be estimated.
• Linear predictor5

The response is predicted as a linear combination of the previously known positions. This
corresponds to a simple model:

ŷK = βT xK + β0.

Given a training set, and for a fixed history length the optimal coefficients β, β0 in terms
of mean squared error can be obtained by solving a linear system.

• Artificial neural networks (ANN)
We investigate a multilayer perception (MLP) with two feed-forward layers as the ANN
predictor (Lippmann 1987). The first layer takes in a fixed history of samples and a
constant value 1, linearly transforms the inputs and then uses a sigmoid function to
generate the hidden values. The equation for the first layer is

hj (x) = 1

1 + exp
(−γT

j x + γj,0
) .

The second layer is chosen to be a simple linear system, and the output is given by

ŷi = ηT h(xi ).

Parameters γ and η are estimated from the training set. We use Netlab toolbox (Nabney
and Bishop 2003) to implement ANN in Matlab.

We have also implemented a Kalman Filter (KF) for comparison, using the expectation-
maximization (EM) method for parameter selection (Murphy 2003), and applied those values
for prediction. Our results agree with (Sharp et al 2004) that the KF provides inferior
performance compared to ANN. For conciseness, we skip reporting them in this paper.
A related research worth noting is the adaptive linear filter model introduced in (Vedam
et al 2004), which can be interpreted as a KF not in the state, but in a linear regression
coefficient vector. Unsurprisingly, it shares the limitation of a KF due to the non-stationarity
of the respiratory signal.

3. Materials

We used the RPM (RPM Varian Medical Systems, Palo Alto, CA) system to obtain the
trajectory of an external fiducial placed on the patient’s chest wall. The recorded displacement–
time relationship is believed to be highly correlated with superior–inferior diaphragm motion
(Vedam et al 2004), which is the major source of respiratory motion for tumours in the chest
or lung area (the displacements in left–right and anterior–posterior directions are normally on
the order of one magnitude lower). To better reflect the behavior of physical superior–inferior
motion, the unit-less RPM data were centered and scaled so that their dynamic range matches
that with typical SI motion for chest and lung tumours. Table 1 summarizes the RPM data
used in our experiment6. Figure 2 illustrates two typical breathing trajectories.

5 The ‘linear extrapolation’ method described in (Sharp et al 2004) is a special case of linear prediction.
6 The data are adjusted to have globally zero mean; average periods are estimated with the subspace projection
method (Ruan et al 2006).
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Figure 2. Typical breathing trajectories: (a) rapid yet regular breath, (b) slow yet irregular breath.
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Figure 3. Covariate–response relationship with a lag-one augmented state: (a) three-dimensional
Delaunay tessellation plot, (b) two-dimensional scatter plot with color indicating the response
value.

Table 1. RPM dataset information.

Subject ID 1 2 3 4 5 6 7 8 9 10

STD 4.96 4.99 3.01 1.99 3.16 1.73 6.27 5.65 2.74 5.29
P-P 25.36 23.65 12.67 11.24 18.72 9.70 28.79 21.89 12.19 21.55

4. Results and discussions

4.1. Scatter plot in augmented space

We first consider a simple p = 2 dimensional state vector xi = [si, si−�]. The response
variable is of the form yi = si+L. Figure 3 shows a three-dimensional scatter plot of (xi ,yi )

with the baseline X–Y coordinate reflecting the covariate xi and the Z coordinate indicating
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Table 2. Comparison of prediction performance among static training, dynamic expanding training
and updating training with moving window.

Subject ID 1 2 3 4 5 6 7 8 9 10 Average

Root mean squared error (RMSE)
Static 9.7 3.6 2.2 1.9 10.8 5.6 4.9 4.2 2.8 4.4 5.0
Expand 3.4 2.8 1.6 1.4 2.5 1.3 4.8 2.6 2.1 3.7 2.6
Update 2.7 2.5 1.4 1.4 2.6 1.3 4.8 2.5 2.1 3.5 2.5

Mean absolute error (MAE)
Static 7.5 2.6 1.7 1.4 3.9 2.6 3.7 2.5 2.1 3.1 3.1
Expand 2.6 2.1 1.2 1.1 1.7 1.0 3.5 1.7 1.6 2.6 1.9
Update 2.0 2.0 1.1 1.0 1.7 1.0 3.4 1.7 1.4 2.5 1.8

the corresponding response variable value yi . The covariate–response structure is rather
smooth, motivating our use of local regression to predict a response from the samples in the
neighborhood of the projection onto the X–Y plane. Roughly speaking, the pattern suggests
the existence of a conceived functional g that maps the covariate to the response.

We started with a fine sampling rate of ψ = 30 Hz and used only lag-one delay with
� = 12 that corresponds to 0.4 s to augment the state space. We investigate a look-ahead
length of L = 30, which is equivalent to a 1 s prediction. We used these parameters as
defaults in later experiments (e.g. in section 4.4). This look-ahead length is reported to be
difficult by (Vedam et al 2004) and (Sharp et al 2004) with a wide spectrum of common
prediction techniques. In particular, in the comparative study in (Sharp et al 2004), the best
performance among linear predictors, Kalman filter and artificial neural networks yields a root
mean squared error (RMSE) of about 5 mm, with similar data statistics to our rescaled RPM
data7. Lag-one augmentation corresponds to regression based on the most current sample si

and one preceding observation si−�, which is the most compact model possible. The temporal
lag � for augmentation should be chosen to reflect the system dynamics properly and robust
enough in the presence of observation noise, and does not have to be unity.

4.2. Local weighted regression without temporal discounting

To illustrate the performance of the simple local weighted regression method described in
section 2.2, we conduct two simple experiments with the following configurations: we used
the ‘tricube’ function (Cleveland 1979) as the weighting kernel κ and chose the effective
bandwidth so that the local regression is supported on half of the samples. Specifically, we
used

κ(x) =
{
(1 − |x|3)3, for |x| < 1
0, for |x| � 1.

(9)

The neighborhood size r was chosen to be 200, which is equivalent to about 7 s worth of
samples. Accordingly, hK is the 200th smallest number among ||xi − xK ||.

7 The research conducted in (Sharp et al 2004) uses a three-dimensional position, which is presumably more complex
than this study. However, since motion in the SI direction dominates the overall respiratory variation in general, we
expect the prediction error to be the major contributor to the overall tracking/prediction performance. Rescaling the
RPM data to have similar statistics as typical SI motion, we feel it fair and illuminating to compare quantitatively the
performance of our predictor to that of the general 3D predictors.
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Figure 4. Effect of dynamically updating the training atlas: actual signal time history (blue solid
line), prediction from static training (black dash-dot line) and prediction from dynamic expanding
atlas (red dashed line). (a) Breathing with mean drifting (patient 1), (b) in the presence of a changing
breathing pattern (patient 6), (c) with complicated transient interrupting regular breathing (patient
8), (d) quasi-regular breathing pattern (patient 10).

4.3. Robust local regression with iterative weighting

We investigated the robust iterative weighting of section 2.3.1, but found that iterative
weighting did not significantly change the prediction errors in this experiment. This suggests
the absence of dramatic outliers in our experimental data.
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Figure 5. A comparison of prediction performance using dynamic update with moving windowed
and expanding training atlas: actual signal time history (blue solid line), dynamic expanding
training (black dash-dot line), moving window adaptive training (red dashed line).

4.4. The effect of dynamically updating the training set

If the training set is determined before the treatment process, and is kept the same thereafter,
the corresponding local regression structures are also fixed. This is the ‘static’ inference
scenario. It is also possible to ‘add’ (or ‘substitute’ the oldest sample with) new samples into
the training set during the treatment process, as new responses become available. We refer to
the latter approach as ‘dynamically updating of the training set’.

The computation for simple local regression is the same regardless of whether we update
the training atlas or not, as it uses only the training samples that fall into the neighborhood
of the target. On the other hand, when robust local regression with iterative weighting is
applied, choosing between static training and dynamic training makes a difference. In the
static scenario, the robust weights can be computed offline upon the availability of all the
training samples, and are kept the same thereafter. However, if we use dynamic updates,
not only does the size of the ‘atlas’ grow with time, but there would also be changes in the
robust weights, since the newly available covariate–response samples can potentially change
the regression weights for those existing samples whose supports overlap with those of the
new ones. This effect can propagate through the whole atlas.

At the cost of possible additional computation, dynamically updating the training atlas
admits new information as the time proceeds. This is particularly valuable when the underlying
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Figure 6. A collective performance comparison for different look-ahead lengths measured with
the (a) root mean squared error (RMSE) and (b) mean absolute error (MAE) with a sampling rate
ψ = 5 Hz.

system dynamics demonstrate strong temporal variation, such as frequency change or home
position drifting, which are both commonly observed. New samples can be added to the
training set as simple addition, which corresponds to a collective history case, or substituted
for the oldest training sample, as in the windowed training history case. In both cases,
experimental results indicate that dynamically updating the training set yields overall superior
prediction performance in terms of root mean squared error (RMSE) and mean absolute error
(MAE), as we report in sections 4.4.1 and 4.4.2.

4.4.1. Dynamically expanding the training set. Using a discount factor α = 0 in (7) to
adjust weight for the training samples up to the most currently available one is equivalent
to building a collective atlas that includes all previous covariate–response pairs. Of course,
new training pairs are entered into the atlas as time proceeds. Table 2 reports the prediction
performance for 1 s look-ahead with 5 Hz sampling using this dynamic training structure as
opposed to a static 20 s training at the beginning of the fraction. Figure 4 illustrates improved
prediction performance by dynamically expanding the training set for breathing traces that
either exhibit mean drifting or pattern changes. There is minimal benefit when the breathing
pattern is already fairly regular or irregular with no ‘trend’, and new observations simply add
to the already sufficiently dense training atlas. Change detection may be used to locate some
local variations, but this imposes extra complexity8.

4.4.2. Dynamically updating the training set with windowed history. Alternatively, a moving
window can be used to update the sample set. This corresponds to substituting the oldest
samples with the newly available covariate–response pairs, as discussed in section 4.4.2. We
illustrate the effect of this dynamic updating method in table 2 and figure 5. A dynamic
windowed history that has a length of 20 s is used in all of our experiments. We used the
performance of dynamic expansion as a baseline for the windowed study.

8 A segmentation-based tracking/prediction model (Wu et al 2004) follows similar logic, yet requires further research
to improve robustness and automation.
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Figure 7. A collective performance comparison for different sampling rates ψ with RMSE
(left column [a#]) and MAE (right column [b#]). The top row [X1] illustrates the results from
a look-ahead length of 0.6 s and the bottom row [X2] shows the results when the look-ahead
length is 1 s.

For the 20 s training window, the overall prediction performance improves upon the
previously discussed dynamic expansion. The level of improvement, though, is much smaller
than the one we obtained by going from static training to dynamic expansion. Some trade-offs
are expected: for long fractions, it is more likely that the later samples are decoupled from
the samples acquired at the very beginning of the procedure; thus the moving window method
should be favorable. On the other hand, dynamic expansion does not require choosing a
window length, and it is almost free of the risk of running into insufficient samples for the
local inference; thus it has the advantage of being simple and stable. There is little difference
in the prediction performance between the two methods from figure 5 except that in the mean
drifting case, the windowed update may be slightly better, which is also reflected quantitatively
in table 2.

4.5. The effect of the measurement rate and look-ahead length

We compared the LOESS method using expanding training atlas with the baseline approaches
described in section 2.4. In particular, we compared with the most recent sample (MRS),
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linear prediction (linear), Kalman filter (KF) and artificial neural networks when the look-ahead
length and sampling rates are varied. Figures 6 and 7 report the results in terms of the collective
RMSE and MAE across all patients. In general, the prediction errors increase as the sampling
frequency ψ decreases and/or the look-ahead length L increases, as expected. Interestingly,
the proposed local regression method is insensitive to the sampling rate, and performs almost
consistently across different look-ahead lengths. Unlike the most recent sample, linear model
or Kalman filter, which not only makes assumptions about the underlying model structure
(linearity), but also try to explicitly solve for the model parameters, LOESS makes none of the
above assumptions or effort. The nonparametric nature of the regression avoids assuming a
fixed model structure, let alone solving for it. The only requirement is consistent behavior (or
existence of an underlying functional form). A polynomial of sufficient order approximates
this underlying function via fitting samples in the neighborhood of the point of interest. This
also explains, to some extent, why ANN outperforms the other approaches (Murphy and
Dieterich 2006), as it is a combination of local linear perceptrons, with extra nonlinearity
provided by the sigmoid activation function. When the look-ahead length is short and the
sampling rate is high, linearity holds approximately, and all methods provide reasonably good
prediction. However, when we need to look further ahead, linear models are not sufficient
to capture the dynamics, even though the response pattern may still be consistent, and that
is where LOESS (and ANN) demonstrates its advantage. Figure 6 reports the relationship
between the collective prediction error (across all testing subjects) and the look-ahead length
for sampling rate ψ = 5 Hz and figure 7 illustrates how the collective prediction error changes
with different sampling rates. The LOESS approach performs competitively with ANN for
look-ahead length 0.6 s, in particular for low sampling frequency, and it demonstrates an
obvious advantage for look-ahead length 1 s.

5. Conclusion and future work

In this paper, we have proposed a local regression-based method to predict respiratory motion.
We compared the proposed method and conventional approaches such as the most recent
sample, linear model, Kalman filtering and artificial neural networks. The proposed method
had a lower prediction error than the others for tasks requiring long look-ahead prediction.
We have also discussed extensions and variations of the basic method to provide robustness
to outliers that may be caused by a low signal-to-noise ratio (SNR) or mis-tracking. We
studied the prediction performance with different error metrics (RMSE and MAE) for various
combinations of look-ahead length and sampling frequency. The proposed method showed
the most advantage for long look-ahead lengths and low sampling rates.

We have discussed the challenge of choosing a good discount factor for weight adjustment
in local regression in section 2.3.2 and discussed the two simple cases corresponding to either
no forgetting or inference from a windowed historical sample. The proper choice of the
temporal discount factor depends on the variation of the underlying breathing pattern, and
automatic schemes should be investigated.

As observed in our experiment, various phases of respiratory motion are predicted with
different accuracies. Respiratory motion demonstrates obvious non-stationarity: the system
variation at the transition phase could be very different than that during extreme tidal stages
(end-inhale or end-exhale). From another perspective, if we examine the SNR over a windowed
portion of the signal, the SNR would change as the window covers different stages of the
breathing: the SNR would be relatively high during transition stage, as the signal variation
is big relative to noise, while the SNR is low at the plateau stages, which correspond to
the end of inhale or exhale. These observations motivate a potential research topic: if
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we aim at homogeneous prediction performance throughout the breathing trajectory, it may
be necessary to use adaptive sampling. More precisely, denser sampling may help where
prediction uncertainty is big whereas sparser sampling should suffice where prediction is more
reliable. This is a topic for future study.

The dynamics of respiratory motions changes over various stages of breathing, and makes
general prediction difficult. Models using state-dependent transition probabilities have been
investigated for stochastic tracking (Ruan et al 2003), and explicit segmentation was also
studied (Wu et al 2004). Our proposed method uses local kernel regression to capture this
variation implicitly by essentially limiting inference to a neighborhood of training samples
that are expected to behave similarly. Intuitively, this is almost equivalent to training a local
model at each state of interest. Since the state distance (and thus the inference weight) is
assigned with respect to the Euclidean distance in state space, it is important that clustering
with this distance reflects dynamic similarity. This is expected in most cases, except when
home (mean) drifting is high both in frequency and in displacement value. In the exceptional
case of dramatic mean drift, samples belonging to different breathing stages may be clustered
together. One straightforward remedy would be to incorporate mean drifting compensation in
the inference weight. A robust mean tracking algorithm for respiratory motion is provided in
(Ruan et al 2007) that outputs mean position estimates for both the training samples and the
state of interest. We expect improved accuracy by accounting for mean position drifting. We
plan to conduct further experiments and analyze this effect in more detail in the future.
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