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Abstract
It is important to monitor tumor movement during radiotherapy. Respiration-
induced motion affects tumors in the thorax and abdomen (in particular, those
located in the lung region). For image-guided radiotherapy (IGRT) systems, it
is desirable to minimize imaging dose, so external surrogates are used to infer
the internal tumor motion between image acquisitions. This process relies
on consistent correspondence between the external surrogate signal and the
internal tumor motion. Respiratory hysteresis complicates the external/internal
correspondence because two distinct tumor positions during different breathing
phases can yield the same external observation. Previous attempts to resolve
this ambiguity often subdivided the data into inhale/exhale stages and restricted
the estimation to only one of these directions. In this study, we propose a new
approach to infer the internal tumor motion from external surrogate signal
using state augmentation. This method resolves the hysteresis ambiguity by
incorporating higher-order system dynamics. It circumvents the segmentation
of the internal/external trajectory into different phases, and estimates the
inference map based on all the available external/internal correspondence
pairs. Optimization of the state augmentation is investigated. This method
generalizes naturally to adaptive on-line algorithms.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Respiratory motion affects tumors in the thorax and abdomen. In particular, breathing is
the major reason for intrafractional tumor motion for lung cancer patients. It is important to
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monitor such motion during radiotherapy treatment to ensure the accurate delivery of radiation
dose in motion-compensated intensity modulated radiotherapy (IMRT). Fluoroscopic imaging
or portal imaging can monitor tumor motion during the treatment process. To reduce x-ray
exposure, hybrid tumor tracking approaches that combine episodic radiographic imaging and
continuous external surrogates have been investigated widely (Ozhasoglu and Murphy 2002,
Murphy 2004, Murphy et al 2002, Schweikard et al 2000, 2004). Using external surrogates to
infer internal tumor motion assumes that there is consistent relationship between the internal
and external motions.

Hysteresis is typical in lung tumor movements, with the tumor taking a different path
during inhale and exhale. Inhalation normally takes longer than exhalation, and the deflating
lung volume exceeds the inflating volume at the same trans-pulmonary pressure (Keall et al
2006). Respiratory hysteresis makes inferring internal tumor locations from external
surrogate signals challenging. Most of the external surrogate systems, such as thermistors,
thermocouples, strain gauges, pneumotachographs (Kubo and Hill 1996) and infrared skin
markers as applied in the Varian Real-time Position ManagementTM (RPM) system (Varian
Medical Systems, Palo Alto, CA), provide one-dimensional signals, whose instantaneous
amplitude (or displacement) alone does not provide sufficient information about the specific
breathing stages.

Previous studies about correspondence between the internal tumor motion and external
surrogates can be classified into two categories. One class of studies investigates the
correlation between the two signals to justify the feasibility of using certain types of
surrogates, or compare different surrogate options (including the placement mechanism)
(Wade 1954, Vedam et al 2003, Ahn et al 2004, Hoisak et al 2004, Tsunashima et al 2004,
Koch et al 2004, Mageras et al 2004). Alternatively, some other studies assume a priori the
existence of a strong correlation between the internal and external signals, and aim to estimate
the correspondence map (Seppenwoolde et al 2007). We adopt the latter perspective and study
with a general setup the correspondence maps that take the external surrogate trace as the
input and output estimates of the internal tumor location, including, but not restricted to linear
relations as reflected by the correlation coefficient and its variants. The presence of respiratory
hysteresis makes this a challenging problem, as the same external surrogate position can reflect
different internal tumor locations during different phases. Existing methods address hysteresis
by first separating empirically the breathing trajectories into two distinct ‘directions’ (inhale
versus exhale), and then constructing a piecewise phase-dependent map (Seppenwoolde et al
2002, 2007, Low et al 2005, Lu et al 2005). However, subdividing the breathing into inhale and
exhale phases often requires manual intervention, and is infeasible for real-time application,
because a breathing ‘peak’ or ‘trough’ can only be identified retrospectively.

In this study, we propose to use a simple state augmentation of the external surrogate
signal. Augmenting the state space with self-delayed observation bestows the model with
‘memory’, which is an alternative way to characterize the ‘path-dependence’ property of
hysteretic systems. This procedure captures system dynamics, and embeds the breathing-
phase information implicitly into the framework. We then provide the solution to a general
class of parametric inference models with the augmented observations. As special cases, we
derive optimal solutions for the parameters of linear and quadratic correspondence models.
Furthermore, given a training internal/external dataset, we demonstrate a computationally
efficient approach to choose a patient-specific (or fraction-dependent) augmentation scheme.
Generalization to adaptive correspondence models follows naturally. We test the proposed
approach on synchronized recordings of internal gold marker trajectories and external fiducial
marker locations (Berbeco et al 2005).
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Table 1. Description of study participants. Patients 1–3 were brought in for data acquisition
purposes only, so there is no prescription dose. Patient 5 was treated twice at the same site, with
two months between treatments. The tumor site is indicated using the common anatomical notation
for lung segmentation: S1-3 is the upper lobe, S4-5 is the middle lobe and S6-10 is the lower lobe.

Patient Gender Age Tumor Pathology No of bb’s Tumor site Prescribed dose (Gy) No of fractions

1 F 47 Adenocarcinoma 4 R S7 N/A 1
2 F 70 Adenocarcinoma 3 L S6 N/A 1
3 F 71 Adenocarcinoma 2 R S5 N/A 1
4 F 47 Adenocarcinoma 3 R S4 48 8
5 M 81 Squamous cell carcinoma 3 R S6b 48 4
5 40 8
6 M 61 Small cell lung cancer 3 R S10 40 8
7 M 68 Squamous cell carcinoma 3 R S6 48 4
8 M 85 Adenocarcinoma 3 R S8 48 4

Section 2 describes the clinical data used for this test, discusses the challenges caused
by hysteresis in converting the external surrogate position directly to the internal tumor
location and presents the proposed method. A general correspondence model is formulated
with polynomial models as an example. The optimal model parameters are derived and a
generalization is given to accommodate adaptivity. Section 3 reports testing results followed
by discussions. Section 4 concludes this study with a brief summary.

2. Methods and materials

2.1. Data description

To study the internal/external motion correspondence, we obtained synchronized recordings
of internal tumor motion trajectories and external fiducial marker locations. The paired
trajectories from eight lung cancer patients were collected with a Mitsubishi real-time radiation
therapy (RTRT) system at the Radiation Oncology Clinic at the Nippon Telegraph and
Telephone Corporation (NTT) hospital in Sapporo, Japan. Two to four 1.5 mm diameter
gold ball bearings (bb’s) were implanted in or near the tumor (Shirato et al 2003) and these
internal markers were tracked in real time with diagnostic x-ray fluoroscopy (Shirato et al
2000). External surrogate signals were obtained with the AZ-733 V external respiratory
gating system (Anzai Medical, Tokyo, Japan) integrated with the RTRT system. It uses a laser
source and a detector, both attached to the treatment couch with the beam placed orthogonal to
the patient’s abdominal skin surface. The device calculates the change in the surface amplitude
by measuring the relative position of the reflected light (Berbeco et al 2005) and outputs a
one-dimensional relative position measurement of the abdominal surface. The data acquisition
rate for the entire system is 30 frames per second. Table 1 describes the study participants.
All patients included in this analysis had the peak-to-peak marker motion greater than 1 cm.
The KV fluoroscopy + Anzai system took multiple readings for each fraction from several
treatment field configurations to account for obscured x-ray views as the gantry rotated. The
recording lengths varied between 20 s and 250 s with an average of 82 s. There are in total
128 readings, 46 of which were longer than 100 s.

2.2. A general correspondence model

To minimize diagnostic imaging dose in IGRT systems, it is important to infer the internal
tumor location from external surrogates. In principle, we could use a correspondence model
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that observes a trajectory �r of the scalar external surrogate r up to the time instant n to infer the
three-dimensional internal tumor position p = (x, y, z). We denote the collective surrogate

information available at time n as �r(n)
�= {r(m) : 0 � m � n}. However, it is challenging to

estimate such a map that estimates the internal tumor position from the complete collection
of historical surrogate data, since the length of the input variable grows to infinity as the
time progresses. A more practical choice is to use some much more compact quantity r that
captures sufficient information from �r for inference. With internal and external motions both
being smooth, it is reasonable to approximate p(r) using polynomials. Therefore, we focus
on estimating a class of correspondence models that are linear in their coefficients as follows:

p̂(r) = Af(r), (1)

where f is a vector function of the external surrogate r; all model parameters to be optimized
are contained in the coefficient matrix A. In particular, two simple correspondence models,
i.e. a linear model and a quadratic model introduced in Seppenwoolde et al (2007), are special
cases of the form given in equation (1).

Linear models assume each coordinate of internal motion is affine in r = r(t). This
corresponds to the case where

f(r) =
[
r

1

]
and A =

⎡
⎣bx cx

by cy

bz cz

⎤
⎦. (2)

Quadratic models map the external surrogate to each coordinate of internal motion via a
quadratic relation. It can be expressed in equation (1) with

f(r) =
⎡
⎣r2

r

1

⎤
⎦ and A =

⎡
⎣bx cx dx

by cy dy

bz cz dz

⎤
⎦. (3)

Expression equation (1) is linear in the model coefficients A and yields a closed-
form optimal solution in the least-squared error (LSE) sense. Given N sample points
(rn,pn), n = 1, 2, . . . , N , the solution to the LSE problem

Â = arg min
A

E(A), (4)

where E(A) = ∑N
n=1 ||pn − Af(rn)||2, is given by solving the normal equation (Luenberger

1969) and

Â = P T F (F T F )−1, (5)

where

F =

⎡
⎢⎣

f(r1)
T

...

f(rN)T

⎤
⎥⎦ and P =

⎡
⎢⎣

pT
1
...

pT
N

⎤
⎥⎦.

The corresponding residual is given by

�P
�= P − FÂT

= (I − F (F T F )−1F T )P , (6)

with the overall residual error (summed over all three dimensions) as

E(Â) = trace{�P T �P }
= trace{P T (I − F (F T F )−1F T )P }. (7)
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It may be preferable to have simpler models (with fewer free parameters) over more
complicated models at the cost of small sacrifice in data fitting performance. This model
selection preference can be incorporated into the optimization setting by modifying the
objective function as

Ẽ(A) = E(A) + λR(#A), (8)

where #A denotes the number of free parameters in the coefficient matrix A and R is a
monotonically increasing function that assigns higher costs to more complicated models. The
regularization weight λ controls the tradeoff between the data fitting E(A) and the preference
for lower-order models. A simple example of R would be the linear function R(#A) = #A,
which directly penalizes the number of components in A; this is equivalent to the Akaike
Information Criterion (Akaike 1974). Using the closed-form optimal solution equation (5)
and the expression for optimal residual error equation (7) for a given fixed model structure,
the modified objective function can be minimized in two layers. We say two inference models
have the same model structure if they only differ in parameter values. It follows immediately
that all models with the same structure has equal number of degrees of freedom, thus the same
complexity regularization R(#A) in equation (8). Therefore, to minimizer over models of
different complexity, it is natural to choose the ‘best’ parameter setting within each model
structure (with fixed degrees of freedom thus a constant complexity penalty), and then compare
across structures. Within each class, the minimizer of the complexity-penalized objective Ẽ(Ã)

is the same as that of E(Ã), and can be solved and evaluated efficiently using the closed-form
optimal solution equation (5) and expression for optimal residual error equation (7). This
motivates the two-layer hierarchical algorithm shown below for finding the optimal solution
within K candidate model structures C = ∪K

i=1{Ci}.
Algorithm 1. Two-layer optimization routine for solving Â= argmin Ẽ(A) (8).

1: Ẽ ← +∞; iopt ← 0; ÃAA ← [].
2: for i = 0 to K do
3: Choose model structure Ci from the collection of models ,
4: Compute Ri = R(#AAA) for structure Ci;
5: Compute ÂAAi within class Ci according to (5) and its residual error E(ÂAAi) from (7).
6: if E(ÂAAi)+Ri < Ẽ then
7: Ẽ ← E(ÂAAi)+Ri;
8: iopt ← i;

9: ÃAA ← ÂAAi.
10: end if
11: end for

2.3. Hysteresis and state augmentation

Conventional methods that explicitly segment the breathing process into inhale and exhale
phases have their limitations, as physical phase transitions (and delays) occur continuously
rather than as discrete jumps. To circumvent the intrinsic difficulty of estimating breathing
phases, we study the system dynamics directly, expecting them to sufficiently convey phase
information. In a discretely observed system, one usually captures the system dynamics
with time-lagged samples. For the sake of simplicity and to avoid over-parameterization, we
restrict this study to a single lag. The proposed method generalizes to multiple-lag models
naturally.
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Given a discrete-time external surrogate r(n), n = 1, 2, . . . , N , we augment each external

surrogate state with a time τ (in discrete unit) delayed sample, i.e. r(n)
�= (r(n), r(n − τ)).

This augmentation captures first-order system dynamics, as the difference between r(n) and
r(n − τ) can be regarded as a measure of the average local velocity. As r is uniquely
determined by �r , it fits into the general formulation equation (1). We apply the methods
provided in section 2.2 to estimate the coefficients for the augmented model. To demonstrate
the idea, we establish a linear model that is comparable to equation (2) and a quadratic model
analogous to equation (3).

The augmented linear model (in r) represents each internal coordinate as a linear
combination of r(n), r(n − τ) and a constant offset, corresponding to

p̂ = Af(r), where f(r) =
⎡
⎣ r(n)

r(n − τ)

1

⎤
⎦ (9)

with a 3 × 3 coefficient matrix A.
The augmented quadratic model (in r) estimates each internal coordinate as a linear

combination of r2(n), r(n)r(n − τ), r2(n − τ), r(n), r(n − τ), 1, corresponding to

p̂ = Af(r), where f(r) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

r2(n)

r2(n − τ)

r(n)r(n − τ)

r(n)

r(n − τ)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

with a 3 × 6 coefficient matrix A.
In both cases, linearity in A results in the closed-form solution given by equation (5) with

the corresponding F , respectively.

2.4. Choice of lag length

The delay τ should be chosen properly, since too long a lag provides minimal local dynamic
information and too short a lag makes the estimation sensitive to observation noise. For
inference purposes, we desire a lag that maximally resolves the ambiguity in the estimated
correspondence map. We choose the lag that minimizes the fitting error for training data:

τ̂ = arg min
τ

E(Â(τ )), (11)

with the objective function E defined in equation (4). The coefficients Â and the error E
depend on τ because f contains both the current external surrogate displacement r(n) and its
lagged state r(n − τ).

Equations equation (6) and equation (7) provide a closed-form expression for E(Â(τ )) for
each given τ . The optimization problem equation (11) simplifies to a simple one-dimensional
line search that we solve by searching over an interval with the corresponding delay time
between 0 (no lag) and about half of an average breathing period.

2.5. Adaptivity of the correspondence map

Adaptivity may be useful to accommodate gradual changes in the correspondence models, due
to drifting or variations in patients’ breathing. In the case of linear and quadratic models, the
operation in equation (5) involves inverting fairly small matrices (3×3 and 6×6, respectively),
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Figure 1. Example of a breathing trajectory with respiratory hysteresis.
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Figure 2. Scatter plot showing the data samples in augmented external state space with the
colors indicating internal AP value. Locally consistent colored samples suggests the potential
of resolving hysteretic ambiguity by distinguishing among different respiratory phases implicitly
with state augmentation.

so direct inversion is numerically feasible. However, when more complicated models with
higher degrees of freedom are used, it is desirable to reduce computation by applying recursive
algorithms that modify current estimates based on newly available data. The key to recursively
updating equation (5) is to avoid recomputing (F T F )−1 from scratch every time. This is
effectively the inversion of empirical correlation matrix with the observation f i . (Ruan et al
2008) provide rank-one update equations for sliding window and exponential discount
adaptivities.

3. Results and discussions

To illustrate the challenges caused by hysteresis, figure 1 shows an example of the relationship
between the internal tumor location obtained by fluoroscopic imaging and an external
surrogate from an abdominal surface measurement as described in section 2.1. We depict only
the anterior–posterior (AP) coordinate against the surrogate signal, as this axis demonstrates
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Figure 3. Correspondence relations in augmented state space and their linear fittings. Upper row:
the internal tumor coordinate versus augmented state for observed samples with colors indicating
internal AP value; bottom row: estimates of the tumor coordinate via linear fit with hollow circles
depicting modeled hypersurface evaluated at regular grid points and solid circles for the evaluation
at the sample locations, with colors indicating the estimated AP value.
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Figure 4. Histogram of paired differences between the RMS errors of the direct and augmented
methods: (a) difference between the RMSE of the direct linear approach and augmented linear
approach; (b) difference between the RMSE of the direct quadratic approach and augmented
quadratic approach.

the strongest hysteresis for this test subject. The optimal linear and quadratic correspondence
maps (Seppenwoolde et al 2007) provide a reasonable inference of the internal tumor motion
from external surrogates, yet they fail to describe the breathing-phase dependency of an ideal
correspondence map. In fact, any function that tries to map the scalar r(n) to p would
experience the same problem, since this is a one-to-multiple relation with hysteresis.

Figure 2 illustrates the internal tumor location in the anterior–posterior (AP) direction
versus the state augmented external surrogates for τ = 45, which corresponds to a 1.5 s delay
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Figure 5. Estimation performance comparison among different methods. Red-solid line depicts
the internal tumor position obtained from fluoroscopic imaging, and dashed-blue line provides
estimated quantities from external surrogates. Each column represents one internal motion
coordinate. Each row indicates the time series generated with one estimation method: (1st row)
direct linear; (2nd row) direct polynomial; (3rd row) augmented linear; (bottom row) augmented
polynomial.

for 30 Hz sampling rate. The scatter-plot in figure 2(a) represents each data sample in the
(r(n), r(n − τ)) space with a circle, and uses color (or intensity if viewed in the gray scale)
to depict the internal AP coordinate values (in mm) from fluoroscopic readout. The one-to-
multiple discrepancy appears largely resolved as different colored circles are not overlaid on
each other, suggesting the existence of a single-valued inference map.

To illustrate the idea of model fitting in augmented state space, we first apply the simple
linear model in equation (9) to the dataset shown in figure 1 with a lag length of 1.5 s (which
may not be optimal), and illustrate the results in figure 3. Even though there are still noticeable
differences between the observed internal coordinates in the upper row of figure 3 and their
linear fit in the bottom row, the aggregated estimation error (across all patients and fractions)
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Figure 6. Estimation error as a function of lag length for state augmentation: linear fit (solid line);
quadratic fit (dashed line).

reduced to 1.74 mm from 2.01 mm with direct linear fitting as in equation (2) and 1.93 mm
with direct quadratic fitting as in equation (3). In particular, we observe noticeable decreases
in estimation error in the AP direction, where hysteretic ambiguity is the most significant.
Table 2 reports the root mean-squared error (RMSE) in each direction, respectively, for the
linear and quadratic models, with and without state augmentation6. Figure 4 reports the paired
(across patient/fraction) differences between the RMS error of the direct methods and the
augmented methods. The RMSE difference between the direct linear and augmented linear
methods has a mean of 0.14 mm and a median of 0.11 mm; the RMSE difference between
the direct quadratic and augmented quadratic methods has a mean of 0.17 mm and a median
of 0.15 mm. To assess statistical significance, we performed a paired Student’s t-test with the
null hypothesis that the performance of the direct and augmented methods do not differ. The
p values for the linear method and the quadratic method are 4.96 × 10−13 and 4.08 × 10−18,
respectively, demonstrating that the error reductions were statistically significant.

Figure 5 shows the estimated time series of these four approaches for converting external
surrogates to internal tumor locations. The higher-order models were more descriptive with
the extra degrees of freedom, as demonstrated by the relative performance of quadratic models
and linear models within each class respectively. State augmentation enables varying response
patterns during different stages of breathing as indicated implicitly by the system dynamics.

As discussed in section 2.4, to properly choose the lag length , we use a short training set
with internal–external pairs to compute offline the estimation performance E(Â(τ )) defined in
equation (4) as a function of the lag length τ . In practice, the lag length does not have to be the
exact optimum in equation (11); values near that optimum should sufficiently convey system
dynamics. Reasonable insensitivity in the choice of lag length τ is desirable as this value is
determined prior to the treatment and remains fixed subsequently. Figure 6 illustrates that the
estimation error is a smooth function of the lag length, which suggests the desired robustness.

6 For comparison purposes, we have also computed estimate from the fifth-order polynomial model with direct
method, which has the same degrees of freedom (18 parameters) as the augmented quadratic model. Its estimation
error is 0.75, 1.25 and 1.11 (mm) in LR, SI and AP direction respectively, with a 3D RMSE equals 1.83 mm. A paired
Student’s t-test between the RMSE for the fifth-order polynomial model and the augmented quadratic model yields a
p-value of 1.06 × 10−10, which indicates statistically significant error reduction by the augmented quadratic model.
This shows that the improved performance of the proposed method is not a direct consequence of increased degrees
of freedom, but should rather be attributed to its capability of resolving hysteretic ambiguity via state augmentation.



State augmentation for hysteretic mapping 2933

3 6 10 14 18 22 26 30 34 3838
0

0.5

1

1.5

2

2.5

3

3.5

Day/Beam

3D
 R

M
S

E
 (

m
m

)

Patient 4

4 7 9 1213 15 17 19 21 23 25 27
0

0.5

1

1.5

2

2.5

3

3.5

4

Day/Beam

3D
 R

M
S

E
 (

m
m

)

Patient 5

4 9 14 19 21 23 28
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Day/Beam

3D
 R

M
S

E
 (

m
m

)

Patient 6

Figure 7. Beam-wise 3D RMSE (mm) for patients 4–6: minimum non-surrogate (blue
circle-dashed); linear inference (green square-dashed); polynomial inference (red star-dashed);
augmented linear inference (cyan triangle-dashed); augmented polynomial (magenta diamond-
dashed). Non-uniform tick locations along the x-axis indicate the number of beams applied to each
individual on the treatment day.
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Table 2. Estimation error table.

LR (mm) SI (mm) AP (mm) 3D (mm)

Direct linear 0.80 1.45 1.13 2.01
Direct quadratic 0.79 1.35 1.13 1.93
Aug. linear 0.75 1.30 0.87 1.74
Aug. quadratic 0.74 1.18 0.84 1.63

For both the linear correspondence model equation (9) and the second-order polynomial model
equation (10) with state augmentation, the optimal τ corresponds to about 1.7–1.8 s delay.
Without this knowledge, our previous experiments used 1.5 s delay to augment the state space
(figures 2–5), and still yielded plausible results. The asymmetric slopes in figure (11) around
the optimal τ̂ suggest that it may be preferable to use a relatively small time delay in the
absence of precise information.

Assuming that the choice of lag length is robust to inter-patient and inter-fraction
variations, we used a fixed lag length equivalent to 1.5 s delay for simplicity, and illustrate
in figure 7 the beam-wise 3D RMSE for patients 4, 5 and 6, whose treatment extended over
multiple days. The minimum RMS error for non-compensated treatment, which corresponds
to a constant estimate at the retrospective mean value, is also shown for reference purposes.
These results confirm that the augmented methods consistently exhibit lower error.

Adaptivity is most beneficial for irregular respiration traces. Our test data had relatively
regular breathing patterns, so the inclusion of adaptivity improved the estimation accuracy
only slightly.

4. Conclusion and future work

We have proposed a method to map external surrogate signals to internal tumor positions.
Breathing-phase-dependent response patterns due to hysteresis are incorporated implicitly by
using a simple state augmentation technique to capture system dynamics. We introduced a
general class of correspondence models that are linear in model parameters, with the linear
and quadratic (in external surrogate) models as special cases. We described closed-form
expressions for both the optimal model parameters and the corresponding error value. Based
on the latter, we further investigated the proper choice of lag length in state augmentation, and
argued its relative robustness. Test results on clinical data demonstrated reduced inference
error over the direct linear and polynomial models.

The number of degrees of freedom in a correspondence model determines the trade-off
between flexibility and robustness. We seek a model that is descriptive enough to fit the data
without undesired sensitivity to observation noise, also known as ‘overfitting’. The proposed
method may have more degrees of freedom than previous methods due to state augmentation.
On the other hand, because it incorporates the breathing-stage information implicitly, it can
use all the available internal–external correspondence pairs, without subdividing the training
data as required for piecewise models (Seppenwoolde et al 2007, Lu et al 2005, Low et al
2005). In principle, using all the data may compensate for the possible increased sensitivity
caused by the extra flexibility. The choice among different complexity levels in augmented
models is still open. Both the number of augmentations and the model degree contribute to the
overall complexity. Further studies should investigate methods for properly penalizing model
complexity based on information criteria as explained in section 2.2.

Many research groups have observed phase shifts between external surrogate signals and
internal tumor motions (Chi et al 2006, Ford et al 2003). Typically, this phase shift was to be
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avoided to obtain higher internal–external correlation. However, it is possible to compensate
for consistent phase shift, to simplify and improve the correspondence map estimation. In
particular, we can artificially synchronize the internal–external phase by shifting one of them
according to a constant offset estimated from training data. We will further study phase-offset
estimation and its use in external–internal inference in the future.

This work is a preliminary study to validate the existence of a reasonably simple
correspondence map and the possibility to estimate it with high accuracy. In practice, internal–
external pairs are obtained at a much slower rate. Correspondence maps must be extracted
from sparse imaging data and applied to continuously obtained external surrogate signals to
estimate the internal tumor locations. Our method can serve as a critical module in this overall
framework, yet intensive simulations and validations are further required.

Even though our test data did not exhibit dramatic improvements when using adaptive
model estimation, model updates in response to changes are necessary in general. Pursuing
this direction requires more thorough analysis of breathing motion variations, change detection
and model adaptive rate.
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