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Modeling and predicting tumor motion caused by respiration is challenging due to temporal varia-
tions in breathing patterns. Treatment approaches such as gating or adaptive bed adjustment/
alignment may not require full knowledge of instantaneous position, but might benefit from track-
ing the general trend of the motion. One simple method for tracking mean tumor position is to apply
moving average filters with window sizes corresponding to the breathing periods. Yet respiratory
motion is only semiperiodic, so such methods require reliable phase estimation, which is difficult in
the presence of noise. This article describes a robust method to track the mean position of respira-
tory motion without explicitly estimating instantaneous phase. We form a state vector from the
respiration signal values at the current instant and at a previous time, and fit an ellipse model to
training data. Ellipse eccentricity and orientation potentially capture hysteresis in respiratory mo-
tion. Furthermore, we provide two recursive online algorithms for real time mean position tracking:
a windowed version with an adaptive window size and another one with temporal discounting. We
test the proposed method with simulated breathing traces, as well as with real time-displacement
�RPM, Varian� signals. Estimation traces are compared with retrospectively generated moving
average results to illustrate the performance of the proposed approach. © 2008 American Associa-
tion of Physicists in Medicine. �DOI: 10.1118/1.2825616�
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I. INTRODUCTION

Accurate modeling and prediction of tumor motion caused
by breathing is a challenging problem. Previous studies1–4

have noted the difficulty of instantaneous position tracking
and prediction. Given such limitations in accuracy, and con-
sidering the actual dosimetric impact of small motion varia-
tions, treatment approaches such as gating or adaptive bed
adjustment/alignment may not require instantaneous posi-
tion, but might benefit from following trends of the motion,
in particular mean position drifting and/or abrupt shifts. Cur-
rent amplitude-based gating systems compare an instanta-
neous tumor location measurement with a predetermined gat-
ing window threshold and trigger the treatment beam on/off.
A potential modification to such systems would incorporate
real-time mean drifting information to �1� adjust bed position
to compensate for continuous mild drifting; �2� trigger the
treatment beam off upon detection of significant drift. Com-
pensating for mean position drifting could increase effective
delivered dose given a fixed treatment margin, or alterna-
tively, it could allow the use of smaller margins to achieve
the same dose delivery. Previously, other investigators have
shown that there could be only limited gains in trying to
eliminate breathing movement completely, and laid the
groundwork for consideration of the methodology described

here. Engelsman demonstrated that the margin needed for
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cyclic breathing can be represented as a Gaussian with stan-
dard deviation of 0.4 times the amplitude of motion.5 Wolth-
aus demonstrated a method for efficiently selecting a mean
patient representation from a four-dimensional computed to-
mography data set.6 Evidence from these and other
investigations7 hint at the possibility that a “tracking” system
that estimates variation in position such as the local mean
may provide significant benefit by reducing or eliminating
nonperiodic trends in motions, while reducing demands on
temporal response and acceleration of couch or multileaf
collimator-based adjustment systems.

Figure 1 illustrates how real-time knowledge of mean
drifting helps to reduce gating margin for the same treatment
dose delivery �90% in this simulation�. In this example,
mean compensation reduces the margin by about 70% com-
pared to traditional static gating approach.

Furthermore, mean drift �or home position motion� is
more stable, with slower temporal variation than instanta-
neous position. This makes it more practical to seek an esti-
mator for this lower order quantity. By imposing smoothness,
a good estimator should be less susceptible to noise than
instantaneous position trackers.

The seemingly intuitive moving average filter is imprac-

tical for real-time application due to �1� the absence of “fu-
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ture” observations at the instant of estimation, and �2� the
difficulty of estimating instantaneous phase online from
noisy observations.

To circumvent the difficulties facing direct filtering ap-
proaches, we propose the following procedure. We form a
state vector at each time instant from the current respiration
value and the value from K samples earlier. We then fit a
low-dimensional ellipse model to some or all of the state
vectors. The state space helps capture respiration dynamics
and elliptical model fitting has the advantage of being robust
to noise, outliers and partially missing data, as discussed in
Sec. II A. The semiperiodicity of respiratory motion prom-
ises reasonable shape inference from proper training data,
while the low degrees of freedom of the ellipse model pro-
vides immunity against local noise �especially at extreme
tidal positions, such as deep inhale and/or exhale�. Ellipse
eccentricity and orientation can potentially capture hysteresis
in respiratory motion. We show that ellipse fitting can be
solved using a generalized eigen decomposition. For real-
time tracking, it is desirable to update the estimate upon
arrival of new observations, but without recalculating all
quantities. We provide algorithms for recursive fitting, using
both temporal windowing and temporal discounting. Section
II B discusses selection of window size and discount factor.

We tested the algorithm with both simulated data and
clinical real-time position management �RPM� data. Experi-
mental data are described in Sec. II B, and the test results are
reported in Sec. III. The estimated trace is compared with
retrospectively generated moving average results to illustrate
the performance of our mean tracking approach. Finally, we
summarize our work and discuss future directions in Sec. IV.

II. METHODS AND MATERIALS

II.A. Technical problem formulation

A strict definition of local “mean” position that reflects
clinical significance is unavailable. On one hand, it is intui-
tive that this time varying quantity should convey local first-

FIG. 1. Effect of drift compensation for gating system: respiration trajectory
�solid line�; mean position �dashed line�: static gating with 90% delivery
coverage �dashdot line�; mean drift compensated dynamic gating with 90%
coverage �dotted line�.
order statistical information; on the other hand, it is challeng-
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ing to determine the intervals over which local statistics
should be computed. The statistical properties of respiratory
motion change with time, with semiperiodicity, which is im-
portant to consider when designing mean position estimators.
As discussed in Sec. I, moving average filtering requires
point-wise phase estimation which is sensitive to noise.
These disadvantages motivate the search for a direct estima-
tor for the mean statistics that is robust to noise. Computa-
tionally efficient algorithms are also necessary for online ap-
plication.

For simplicity, we assume the observations to be a scalar
function of time, termed “displacement.” This is the scenario
in RPM and many other external surrogate systems. When
higher-dimensional data are available, such as internal three-
dimensional tumor position readout from either gold im-
plants or extracted from real-time imaging, we simply track
the mean along each dimension separately. If desired, cou-
pling among different directions could also be incorporated.

For our local mean estimator, we first form a state vector
using the current observation and a past observation, intend-
ing to capture the �first order� system dynamics. We fit el-
lipses to the observed trajectory �its windowed or discounted
version� in this state space. An ellipse has relatively few
degrees of freedom, providing robustness to noise and to
partially missing/unreliable observations. The latter property
makes it possible to estimate the mean without meticulously
choosing the training window size. Missing observations
also can occur in practice when the imaging system loses
track of the object of interest. Since we do not intend to use
the ellipse fitting results to model the breathing trace, the
benefit of robustness outweighs the issue of model mismatch.
Our ellipse fitting method is invariant to affine transforma-
tions of the state vectors, making it well suited for unitless
data such as RPM signals. Finally, orientation can indicate
hysteresis; the less aligned the ellipse is with the Euclidean
coordinates, the stronger the hysteresis.

Given a set one-dimensional discrete samples xi=s�ti�, we
first augment it with yi=xi−k where �=k�t indicates the delay
for augmentation, assuming uniform sampling. The particu-
lar choice of delay length is not too crucial, and here we use
�=0.5 s. �For noisy data, it is also feasible to locally smooth
xi and yi to better reveal the system dynamics.� We first dis-
cuss the static ellipse fitting problem, where we fit an ellipse
to a fixed collection of samples �xi ,yi� for i=1,2 , . . . ,n. We
then provide recursive algorithms where our estimates
evolve over time.

II.A.1. Ellipse fitting with static data

We model ellipses using a general quadratic curve equa-
tion. Let �x ,y� denote the coordinates of a point in the two-
dimensional state space, and define z= �x2 xy y2 x y 1�T,
where superscript T denotes transpose. Then point �x ,y� falls
on the ellipse parameterized by a= �a b c d e f�T if and only
if they satisfy the following quadratic curve equation:

F�a,z� = aTz = ax2 + bxy + cy2 + dx + ey + f = 0 �1�
2
with negative discriminant, i.e., b −4ac�0.
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The center �x0 ,y0� of the ellipse parameterized with a is
given by

x0 =
2cd − bf

b2 − 4ac
,

y0 =
2af − bd

b2 − 4ac
. �2�

From Eq. �1�, a sample zi lies on a given ellipse param-
eterized by a if and only if F�a ,zi�=0. This motivates the use
of F2�a ,zi� as a measure of deviation of the sample from the
ellipse. This is known as “algebraic distance” which coin-
cides with Euclidean distance in the case F is a plane. It is
computationally beneficial to adopt this discrepancy measure
so that the collective distances for N samples can be conve-
niently written in standard matrix form and manipulated with
classic least-squares approaches as in Eq. �3�. For observed
samples of the form �xi ,yi�, i=1,2 , . . . ,N, we want to find
the ellipse parameter a that minimizes the following cost
function:

�
i=1

N

F2�a,zi� = aTSa, �3�

where we define the 6�6 empirical correlation matrix
S=�i=1

N zizi
T.

The minimizer of Eq. �3� is invariant to constant scaling
applied to a, so we impose the constraint that b2−4ac=−1,
or equivalently in matrix form aTCa=1 with

C = � C̃ 03�3

03�3 03�3
� , �4�

where

C̃ � �0 0 2

0 − 1 0

2 0 0
	 ,

and 03�3 denotes a 3�3 matrix of zeros. In other words, our
ellipse fitting requires minimizing aTSa subject to the con-
straint that aTCa=1. The center of the fitted ellipse given by
Eq. �2� will be our mean position estimate.

Introducing the Lagrangian multiplier � and differentiat-
ing, we need to solve the system of equations


Sa − �Ca = 0;

aTCa = 1.
� �5�

We solve this using the generalized eigen decomposition
of the pair �S ,C�. By Theorem 1 in Ref. 8, there is exactly
one positive generalized eigenvalue and it corresponds to the
unique local minimum of the Lagrangian. The corresponding
eigenvector is the optimal solution to the ellipse parameter in
Eq. �3�. Let �� ,u�, denote the solution to the generalized
eigenvalue problem with ��0, then â=u /�uTCu is the so-
lution to the constrained minimization problem. The rank
deficiency of C can cause instability issues if a conventional

generalized eigen-decomposition algorithm were applied,
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e.g., Ref. 9, without caution. On the other hand, its sparsity
may reduce computation. We describe next a specific algo-
rithm for finding â for this problem.

First, we decompose the 6�6 empirical correlation ma-
trixes S into block form analogous to Eq. �4� as

S = � E B

BT D
� ,

where each block is 3�3.
Then we use the following iterative algorithm to compute

â:

an+1 = �n

an
TWan

an
TCan

S−1Can + �1 − �n�an, �6�

for iterations n=0,1 , . . ., where we define

W = �E 0

0 − D
� .

It is shown in Ref. 10 that an converges asymptotically to
the eigenvector that corresponds to the unique positive ei-
genvalue of �S ,C�, provided that the stepsize parameter �n

� �0,1� is asymptotically bounded above by 2 / ��+1� with

� being the condition number of �S̃ , C̃�, where, S̃ is the Schur

complement of the block D in S defined by S̃�E−BD−1BT.
The condition number of a generalized eigen decomposition
is defined as ��A ,B�= 
�max�A ,B� / �min�A ,B� 
 where
�max�A ,B�, �min�A ,B� denote the maximal and minimal �by
moduli� generalized eigenvalues of �A ,B�.

The key ingredients underlying Eq. �6� �Ref. 10� are: �1�
the rank deficiency of C makes it necessary to identify the

“essential subspace” �corresponding to S̃ and C̃� and track its
evolution; �2� to permit a stochastic approximation setting,
the discrete time algorithm of interest is linked to a continu-
ous time system that can be represented by an ordinary dif-
ferential equation �ODE� whose convergence performance is
derived. The convergence of the discrete algorithm is guar-
anteed if it follows the ODE close enough, which results in
the condition on step size �n.

To implement the algorithm in Eq. �6�, we must choose
�n, which is essentially the step size for updating a. We

compute S̃ from the empirical S for training data, then evalu-

ate ��S̃ , C̃�, then set �n	 2 / ��+1� . Ideally, �n should be set
as close to 2 / ��+1� as possible for fast convergence, and
the speed is determined by the condition number � of the
�S ,C� pair.

II.A.2. Adaptivity with new observations

The iteration in Eq. �6� provides ellipse fitting for a given
set of data. For real-time use of mean tracking, we want an
efficient procedure to update â as each new data point is
measured. In ellipse fitting, the matrix C describes the shape
prior �constraint�, and remains constant. Whenever new data
become available, the empirical correlation matrix S
changes. However, iteration �6� uses the inverse of S, and we

want fast methods for updating that inverse.
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To express the time varying property of the system, we
use an�i�, Sn�i� etc. to denote the various quantities at a given
acquisition time t= i�t. For a given i, we rewrite Eq. �6� as
follows:

an+1�i� = �n
an�i�TW�i�an�i�

an�i�TCan�i�
S�i�−1Can�i�

+ �1 − �n�an�i�, n = 0,1, . . . ,Ni − 1, �7�

where Ni denotes the number of iterations used to compute
the ellipse parameters at a given time i.

When a new data sample becomes available �i→ i+1�, we
initialize the ellipse parameter as follows:

a0�i + 1� = aNi
�i� , �8�

where aNi
�i� is the state estimate obtained from the last inner

iteration. The challenge is to compute the inverse of
S�i+1� efficiently, and we provide below efficient rank-one
updates for S−1 for both the sliding window adaptation and
exponential discount adaptation.

1. Sliding window update
We define S�i�=� j=t−L+1

i z jz j
T with L indicating the

constant window size.
When a new sample pair zi+i becomes available

S�i + 1� = �
j=i+1−L+1

i+1

z jz j
T = S�i� − zi−L+1zi−L+1

T + zi+1zi+1
T . �9�

To compute S�i+1�−1 from S�i�−1, we denote
Q�i�=S�i�−zi−L+1zi−L+1

T , so that S�i+1�=Q�i�+zi+1zi+1
T .

We invoke the Woodbury matrix identity11 to compute
S�i+1�−1 with two step rank-one updates:

Q�i�−1 = �S�i� − zi−L+1zi−L+1
T �−1

= S�i�−1

− S�i�−1zi−L+1�zi−L+1
T S�i�−1zi−L+1 − 1�−1

zi−L+1
T S�i�−1, �10�

S�i + 1�−1 = �Q�i� + zi+1zi+1
T �−1

= Q�i�−1

− Q�i�−1zi+1�zi+1
T Q�i�−1zi+1 + 1�−1zi+1

T Q�i�−1.

�11�

This pair of properties provides a recursion in S�i�−1.
Substituting into Eq. �7� yields a recursion in the esti-
mation parameters a�i+1�.

2. Discounting update
As an alternative to a fixed-length sliding

window, we can use temporal discounting to
emphasize the most recent data. In this case, we define
S�i�= �1−
� / �1−
 t�� j=1

i 
 i−jz jz j
T, where 
� �0,1� is a

user-selectable discounting parameter. We can easily
write S�i+1� recursively as

1 − 
 i+1

S�i + 1� = 

1 − 
 i

S�i� + zi+1zi+1
T . �12�
1 − 
 1 − 
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Invoking the matrix inversion lemma yields the re-
cursion for S−1

S�i + 1�−1 =
1 − 
 i+1


 − 
i+1 S�i�−1

− S�i�−1xi+1
 1 − 



 − 
 i+1

+ xi+1
T S�i�−1x j+1�xi+1

T S�i�−1. �13�

Substituting this in Eq. �7� yields an adaptive ellipse fitting
algorithm with temporal discounting.

The size of the window width L and the discount factor 

control the trade-off between response speed and smoothness
of the tracking trace in each adaptive algorithm, respectively.
Even though the ellipse fitting method is robust to missing
data �e.g., a partial period�, it is still desirable to react more
promptly when changes are more frequent �short underlying
breathing periods and/or rapid shifts in mean position� and
track stably otherwise. For fixed-length sliding window
adaptivity. it is preferable to choose a window size that
roughly matches the “true” period of the signal. Therefore,
we use a short segment of training data at the beginning of
each treatment fraction, find the closest periodic function to
the training segment using a subspace projection method12

and use the derived period as the fixed window length L.
We could choose the discount factor 
 analogously by

using effective memory length, defined by

L̃�i� = �
j=1

i


i−j , �14�

because the time unit has a more intuitive physical
interpretation. For large i, the efficient memory length is

L̃= 1 / �1−
� . In other words, we expect the performance of
an adaptive mean tracker with discount factor 
=1− 1 / L to
behave similarly to a sliding window estimator with window
size L. In general, however, the discount method should be
more stable, but less responsive towards changes than the

corresponding sliding window approach with L= L̃ because
previous samples are never completely “forgotten.” Thus, we
use the period estimated from projection as noted before12 to
find L from 20 s of training data, then find 
 such that


�L = � ,

where the pair of parameters �� ,�� adjusts the decay rate. It
has the interpretation that the effect of a given sample decays
to � after � periods. We found that in practice �=1 and
�=0.05 is a reasonable choice and we use these values in
later investigations.

II.A.3. Alternative mean estimators

• Moving average

The simplest way to compute local first order statis-
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tics is to use the empirical average of observation
samples in an appropriate window around each time
instant, i.e., form the neighborhood �window� and take
the empirical average. As the time instant of interest
proceeds, the window moves at the same speed.

The traditional method of moving average over fixed
window is formulated as �we assume the window size L
to be even to simplify notation�.

x0�i� =
1

Li + 1 �
j=i−Li/2

i+Li/2

xi, �15�

where Li is the “period” near sample i.
One obvious issue with this approach is that the “fu-

ture” samples �j= i+1, . . . , i+L /2� are not available for
the computation of the instantaneous mean at time
t= i�t. Furthermore, even if the signal is regular and
periodic, in which case those values can be inferred
fairly accurately, this estimator is effective only if the
window sizes closely match with the signal period.

• Eigen decomposition in the original data space
As the ellipse fitting methods aim to exploit the scat-

ter structure in the augmented state space zi= �xi ,yi�,
one may wonder whether the conventional eigen de-
composition �also known as “principle component
analysis”� approach applies. Eigen decomposition may
capture the elliptical shape by detecting the major and
minor direction of signal variation �the direction of
eigen-vector� and their different energy levels, but it is
not useful in mean estimation. In fact, the center of such
“ellipse” from eigen decomposition would be exactly
the same as the average over the data segment used,
because the quantities that enter the covariance matrix
are first adjusted to have zero mean. Therefore, eigen
decomposition would perform exactly the same as mov-
ing average filters for the task of mean estimation.

II.B. Experiment setup

We simulated two sets of data so that we could have
“ground truth” for verification purposes. For the first set of
simulations, we used noise-free, strictly periodic data with
both ideal sinusoid and modified cosine models.13 In particu-
lar, the discrete sinusoidal and modified cosine waveforms
were generated, respectively, with

xi
sin = x�i�t� = x0 + a sin�
i�t/T − �� , �16�

xi
modified cos = x�i�t� = x0 − a cos2n�
i�t/T − �� , �17�

where we used the value n=2. In the second test, we gener-
ated a semiperiodic sinusoid function with slow frequency
drifting by modulating the local frequency with random off-
set components, as follows:

xi
sin = x0 + a sin

�t�

i

�1/T + �k�� − �� , �18�

k=1
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xi
modified cos = x0 − a cos2n

�t�

k=1

i

�1/T + �k� − �� , �19�

where the �k values were distributed via a Gaussian distribu-
tion N�0,�2� with ��1 /T. In the simulation, we set period
T=5 s, �t=1 /30 s corresponding to a sampling frequency of
30 Hz, home position x0=0, magnitude a=5 cm, and sys-
tematic phase offset �=0. Figure 2 shows typical simulation
traces.

For real clinical data, we used the Real-Time Position
Management �RPM, Varian Medical Systems, Palo Alto, CA�
system to obtain the trajectories of external fiducials placed
on the chests of 12 patients. The displacement-time relation-
ship was recorded at 30 Hz and is assumed to be highly
correlated with superior-inferior diaphragm motion,4 which
is a major source of respiratory motion for tumors in the
chest or lung area. We centered and scaled the unitless RPM
data so that their dynamic range corresponds to typical
superior-inferior �SI� motion for chest and lung tumors.1,14

We can thereafter consider the units to be on the order of mm
for typical thorax tumor motion. Characteristic parameters
for the RPM data used in our experiment are reported in
Table I.

III. RESULTS AND DISCUSSION

III.A. Scatter plot in state space and robustness
towards noncentered data

The fitting methods approximate data in the state space
�x ,y� by ellipses. It is desirable to have the center of such
ellipse, which corresponds to the mean estimator, to be ro-
bust to missing data, spurious data, and to input data lengths
that differ from the ideal period centered at the time instant
of estimation. Figure 2 illustrates both data-abundant cases
and the cases where only a segment �3 s worth� of arc data is
available for fitting. The fitted ellipses are overlaid with the
observation samples in the augmented state space. The sec-
ond column in Fig. 2 illustrates that ellipses are reasonable
approximations for the scattered observations in the state
space. The difference between column 3 and 4 in Fig. 2
indicates the change of parameters in the presence of scarce
and/or noncentered data. Not only does the ellipse fitting
method degrade gracefully with partial data, but also the
mean position estimated from this approach is reasonably
stable. This empirical study illustrates the feasibility of using
the proposed method in mean tracking and prediction.

III.B. Adaptive estimation

We first test the case where we use a fixed interval of the
most recent data. In the real-time estimation and prediction
setting, all the input samples into the estimation algorithm
precede the time instant of interest. We also want to empha-
size that the windowed history is used to help estimate the
ellipse parameters; and it need not have integer multiples of
the period. We tested the windowed ellipse fitting with 5 s
and 7 s local history length, and report the results in Fig. 3.

Discount adaptations yield very similar results to the win-
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dowed fitting, resulting in virtually overlapping real-time
mean tracking curves. We omit them from the figures for
visualization clarity. We also plot the outputs of two simple
moving average filters with fixed window lengths.

FIG. 2. Illustration of ellipse fitting performance of the proposed method. E
�bX� ideal modified cosine; �cX� locally modulated �noisy� sinusoid; �dX� lo
P-P�10 mm to mimic SI motion. Columnwise: X�1� time-displacement gra
ellipse fitting �dashed line� applied to complete dataset; X�4� ellipse fitting

TABLE I. RPM Dataset information.

ID V.S. Parameter 1 2 3 4 5

Data cha
STD 2.91 6.47 13.05 2.83 4.86
P-P 10.93 25.03 48.91 9.02 13.09
Period �sec� 4.5 4.6 7.2 5.6 4.4

a
The data were adjusted to have globally zero mean; average periods were estim
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We constructed our simulations to have frequency 0.2 Hz
for deterministic cases or centered around that for the ran-
domly frequency modulated realizations. Therefore, the
ground-truth mean motion was zero for all the simulations.

w corresponds to a different data source: row 1 �aX� ideal sinusoid; row 2
modulated �noisy� modified cosine; �eX� clinical RPM trace scaled so that
�2� augmented state space with displacement and its delay ��=0.5 s�; X�3�

ed line� applied to partial dataset.

6 7 8 9 10 11 12

rizationa

2.78 4.30 7.61 2.08 7.72 13.04 6.56
11.47 17.77 26.93 13.14 37.44 38.97 32.54
5.4 4.7 9.7 4.7 4.1 3.1 5.2
ach ro
cally
ph; X
�dash
racte
ated with subspace projection method �see Ref. 12�.
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FIG. 3. Comparison of moving average �MA� and ellipse fitting estimator for mean position tracking: left column X�1�: oracle history window length: L
=5 s matches the underlying signal periods exactly; right column X�2�: history window length L=7 s disagrees with the signal periods. Rows correspond to

different data source as in Fig. 2. Solid line: observation signal; dotted line: moving average output; dashdot line: output from the ellipse fitting algorithm.

Medical Physics, Vol. 35, No. 2, February 2008
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The clinical RPM data �Patient 1 in both Table I and Fig. 6�
also has approximately the same frequency. Since both the
simulated and clinical data lack mean drifting, a good esti-
mator for the mean position should yield very stable �flat�
output. When we select the training window size to be the
“oracle” �ground-truth value unknown to the algorithm�
value of L=5 s, which coincides with the signal period, out-
puts are stable from both the moving average operator and
the proposed method �A constant offset, as observed in the
modified cosine case, has marginal clinical effect, as long as
it is consistent�, as illustrated by the the left column in Fig. 3.
On the other hand, it is impossible to guarantee that the
history window size will always match the true period. We
illustrate the effect of a disagreement, where window size
L=7 s in the right column in Fig. 3. The moving average
filter exhibits undesirable oscillations, whereas the ellipse fit-
ting method provides comparable results as in the case of
perfect period match.

As discussed in Sec. II A 2, the size of the sliding window
and the discount factor must compromise between response
speed �tracking efficiency� and robustness �tracking stabil-
ity�. Even though the ellipse fitting method is not too sensi-
tive to the window size, it is helpful to choose window
length L and discount factor 
 from a short segment of train-
ing data. Figure 4 illustrates the effect of various choices of
window length parameter L on mean estimation performance

FIG. 4. Effect of window length L on tracking performance. Solid line: obs
with relatively long period; �b� RPM with relatively short period.

FIG. 5. Effect of discount factor 
 on tracking performance. Solid line: obser

with relatively long period; �b� RPM with relatively short period.
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with some RPM data and Fig. 5 illustrates the effect of the
discount factor 
. For RPM data with relatively long period
and slow drifting, as in Figs. 4�a� and 5�a�, it is desirable to
use a larger window size �and correspondingly weaker dis-
counting, large 
� to take advantage of its robustness. On the
other hand, for breathing signals that have relatively short
periods and rapid shifts in mean position, such as the one
illustrated in Figs. 4�b� and 5�b�, shorter window lengths and
small discount factors are preferable for prompt response to
mean changes.

To automatically adjust the sliding window length and the
discount parameter, we take a short segment of training data
at the beginning of each treatment fraction, and apply a sub-
space projection-based period estimation method.12 For the
signals in Fig. 4, the signal in subplot �a� yields a period
estimate of 9.7 s and the signal in subplot �b� yields a period
estimate of 3.1 s. Using the estimated period as the sliding
window length and choosing the corresponding discount fac-
tor appear to be reasonable based on Figs. 4 and 5. We apply
this scheme to automatically choose the adaptive parameters
for all of the 12 RPM datasets and report the results in Fig. 6.
For base line comparison, we collect the complete trajectory,
and apply a moving average filter according to Eq. �15� with
the oracle window size L to obtain a reasonable ground truth.
The deviation of the two adaptive real-time mean position
estimators from this “gold standard” �with constant offset

ion; dashed line: L=7 s; dashdot line: L=5 s; dotted line: L=3 s. �a� RPM

n; dashed line: 
=0.99; dashdot line: 
=0.97; dotted line: 
=0.95. �a� RPM
ervat
vatio
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compensated� is reported in terms of root mean squared error
�RMSE� in Table II. Both adaptive methods demonstrate rea-
sonable agreement with the retrospectively obtained ground
truth.

III.B.1. Sensitivity to sampling rate

In some cases, it is preferable to obtain observations at a
low frequency. This is particularly true when internal tumor
motion is extracted from real-time imaging devices that
would incur radiation dose. Sparse sampling poses a particu-
lar challenge to the conventional mean estimator based on a
moving average filter, which is more vulnerable to miss cal-
culation of period length when there are very few samples,

FIG. 6. Mean tracking for RPM data with window size determined by perio
mean estimation with oracle period; dash line: sliding window mean estim
dashdot line: discounting estimator with discount factor 
 chosen such that

TABLE II. Mean estimation performance.

ID V.S. Parameter 1 2 3 4 5

Period L �sec� 4.5 4.6 7.2 5.6 4.4
Sliding Win RMSE 0.35 0.77 0.96 0.23 0.68
Discount factor 
 0.978 0.979 0.986 0.982 0.978
Discounting RMSE 0.36 0.77 1.08 0.24 0.71
Medical Physics, Vol. 35, No. 2, February 2008
resulting in intolerably high variance in mean estimation. We
tested the use of sparse real-time observations by subsam-
pling from the 30 Hz signal, applying both windowed and
discounted adaptive algorithms to estimate the mean target
position, and comparing with the retrospectively generated
“true” mean from densely sampled data. Figure 7 illustrates
how different observation rates affect overall RMS error
across all patients. Both adaptive approaches are quite robust
to low sampling rate. In particular, as the windowed adapta-
tion only used historical samples that are within one period,
which is normally about 4–6 s, the observable “break down”
at 1 Hz in Fig. 7�a� corresponds to estimating the ellipse
from 4–6 samples only, which is somewhat expected. On the

imator. Solid line: observed data; dotted line: retrospective moving average
with window size L chosen with period estimation during training phase;
=1 /20.

6 7 8 9 10 11 12

5.4 4.7 9.7 4.7 4.1 3.1 5.2
0.36 0.35 0.90 1.09 1.22 1.21 1.40
0.982 0.979 0.990 0.979 0.976 0.968 0.981
0.35 0.44 1.22 1.54 1.55 2.18 1.39
d est
ator

L/�t
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other hand, the discounted adaptation utilizes all previous
samples in a weighted fashion, and is naturally less affected
by sparse sampling as shown in Fig. 7�b�.

III.C. Discussion

Although we assumed uniform sampling for simplicity,
the proposed approaches easily generalize to nonuniform
sampling scenarios, thanks to the robustness of the fitting
process. Lower sampling rates should affect the estimation
less than the partial datasets tested in Fig. 2. Nearly uniform
but sparse sampling along the ellipse would increase estima-
tor variance, but should not introduce bias, unlike the partial
data case where all the samples are concentrated along an arc
segment.

Unlike simple filtering methods, the ellipse fitting method
is more objective oriented: it is specifically designed for es-
timating time-variant mean of breathing signals. The ellipse
model reflects the semiperiodicity of respiratory motion. The
fitting process is flexible enough to capture changing trends
yet is robust enough to control noisy oscillations. The adap-
tive algorithms provide efficient updates of the ellipses and
allow the users to determine the update rates of the fitting.
For adaptive methods using either sliding window or dis-
counting factor, parameter selection involves the trade-off
between system response speed and stability. We have sug-
gested one way to adjust the sliding window length L based
on the estimated nominal period length, and discussed a con-
nection between the discount factor 
 and the “effective

memory length” L̃ to provide some guidance about the
choice of those parameters. Fast drifting sequences require a
more responsive system, and this should be reflected in the
corresponding parameter settings. Even though the mean
drifting pattern and the respiratory frequency are very often
closely correlated, a slow �and regular� breathing pattern
may still exhibit abrupt changes, as observed in the upper-
left corner of Fig. 6. It is possible to resolve this issue by

FIG. 7. Overall RMS error �across all patients� as a function of sampling rat
adaptivity with discount factor 
 chosen such that 
L/�t=1 /20. Both metho
applying the proposed method on a training segment and
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then investigating the variation pattern of the estimated mean
position to further decouple the different causes of the mean
position changes. As relation �14� only holds asymptotically,
and the discounting method is less forgetful than its sliding
window counterpart, the discount factor may need to be fur-
ther reduced to accommodate the more rapidly changing
trends.

IV. CONCLUSION AND FUTURE WORK

We have proposed a robust method to track the mean
position of respiratory motion. Modeling the breathing tra-
jectory in the augmented state space as motion along ellipses
incorporates the semiperiodicity and possible hysteresis of
respiration. A shape prior that translates to constraints in the
data fitting problem circumvents the challenge of precise
phase estimation, and makes the overall method robust to
partial data. We solve the optimization in terms of ellipse
parameters with generalized eigen decomposition, and pro-
vide computationally efficient iterative algorithms for both
static data and the adaptive case. In particular, we investi-
gated two typical adaptive approaches: sliding window and
exponential discounting. We derived the corresponding rank-
one update for each setting, respectively, and studied ways to
choose update parameters �window size and discounting fac-
tor�. Experiments with both simulation and clinical RPM
data illustrated the feasibility of the proposed method.

Our algorithms generalize easily to nonuniformly sampled
observations and higher-dimensional cases. Commercial
solvers for some intermediate steps, such as generalized
eigen decomposition, are available. Clinical experience and
physical prior knowledge can help guide choosing either the
proper sliding window size or discount factor. In general,
both the window size and the discount factor allow real-time
adjustment �at the possible cost of more complicated update
rules�, and could even be tuned intra-fraction, if necessary.

with windowed ellipse fitting adaptivity; �b� with discounted ellipse fitting
robust above 2 Hz sampling rates.
e: �a�
ds are
The intuitive interpretation of the parameters in terms of
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window size L, effective memory length L̃ and decaying pa-
rameters �� ,�� makes the control of those parameters prac-
tical.

In the future, we will investigate approaches to learn
mean position drifting rate, detect abnormal abrupt changes,
and properly adjust the adaptivity pace accordingly. This
concerns the clinically significant question of “how far we
can reliably extrapolate into future based on current observa-
tions.” We will further validate the proposed method on al-
ternative external surrogates and internal tumor trajectories
upon availability of such data, as they may bear different
noise properties. We would also like to study the application
of the proposed method to different treatment methods, and
look into software-hardware cooperation issues.
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