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Abstract
Accurate real-time prediction of respiratory motion is desirable for effective
motion management in radiotherapy for lung tumor targets. Recently,
nonparametric methods have been developed and their efficacy in predicting
one-dimensional respiratory-type motion has been demonstrated. To exploit
the correlation among various coordinates of the moving target, it is natural
to extend the 1D method to multidimensional processing. However, the
amount of learning data required for such extension grows exponentially with
the dimensionality of the problem, a phenomenon known as the ‘curse of
dimensionality’. In this study, we investigate a multidimensional prediction
scheme based on kernel density estimation (KDE) in an augmented covariate–
response space. To alleviate the ‘curse of dimensionality’, we explore the
intrinsic lower dimensional manifold structure and utilize principal component
analysis (PCA) to construct a proper low-dimensional feature space, where
kernel density estimation is feasible with the limited training data. Interestingly,
the construction of this lower dimensional representation reveals a useful
decomposition of the variations in respiratory motion into the contribution from
semiperiodic dynamics and that from the random noise, as it is only sensible
to perform prediction with respect to the former. The dimension reduction
idea proposed in this work is closely related to feature extraction used in
machine learning, particularly support vector machines. This work points out
a pathway in processing high-dimensional data with limited training instances,
and this principle applies well beyond the problem of target-coordinate-based
respiratory-based prediction. A natural extension is prediction based on image
intensity directly, which we will investigate in the continuation of this work.
We used 159 lung target motion traces obtained with a Synchrony respiratory
tracking system. Prediction performance of the low-dimensional feature
learning-based multidimensional prediction method was compared against the
independent prediction method where prediction was conducted along each
physical coordinate independently. Under fair setup conditions, the proposed
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method showed uniformly better performance, and reduced the case-wise 3D
root mean squared prediction error by about 30–40%. The 90% percentile 3D
error is reduced from 1.80 mm to 1.08 mm for 160 ms prediction, and 2.76 mm
to 2.01 mm for 570 ms prediction. The proposed method demonstrates the
most noticeable improvement in the tail of the error distribution.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Accurate delivery of radiation treatment requires efficient management of intrafractional
tumor target motion, especially for highly mobile targets such as lung tumors. Furthermore,
prediction is necessary to account for system latencies caused by software and hardware
processing (Murphy and Dieterich 2006). Predicting respiratory motion in real time is
challenging, due to the complexity and irregularity of the underlying motion pattern. Recent
studies have demonstrated the efficacy of semiparametric and nonparametric machine learning
techniques, such as neural networks (Murphy and Dieterich 2006), nonparametric local
regression (Ruan et al 2007) and kernel density estimation (Ruan 2010). For a given lookahead
length, these methods build a collection of covariate/response variable pairs retrospectively
from training data and learn the underlying inference structure. The covariate at any given
time consists of an array of preceding samples; the response takes on the value after a delay
corresponding to the lookahead length, interpolated if necessary. In real-time applications,
the testing covariate is constructed online, and the corresponding response value is estimated
based on the map/distribution learnt from the training data.

These single-dimensional developments can be trivially extended to process
multidimensional data by evoking 1D prediction along each physical coordinate independently.
A more natural alternative is to formulate the multidimensional prediction problem directly,
using multidimensional training and predictors. In principle, all of the aforementioned
techniques apply, yet the involved high-dimensional learning gives rise to the concern known
as the ‘curse of dimensionality’ (Bellman 1957)—the amount of data required to learn a map
or distribution grows exponentially with the dimensionality of the underlying space. The
requirement of mass training data poses a challenge for highly volatile respiratory motion, as
rapid changes require fast response from adaptive prediction algorithms with minimal data
requirement.

A key observation that allows us to circumvent this difficulty is that most training and
testing pairs lie in a sub-manifold of the complete high-dimensional space. This motivates
us to study a lower dimensional feature space where the essential topologies of training
and testing are preserved. It is natural to expect that efficient regression performed in this
feature space produces an ‘image’ of the higher dimensional predictor. To demonstrate the
proposed principle, we use the kernel density estimation (KDE)-based prediction method as
an example, yet we expect similar behavior for the majority of semiparametric/nonparametric
methods. For simplicity, we adopt a simple linear manifold (subspace) spanned by the principal
components as the feature space (Gerbrands 1981). A forward mapping first projects all
covariate/response pairs into this lower dimensional feature space, which effectively ‘lifts’ the
curse of dimensionality for training. The core of the KDE-based prediction is then performed,
and the prediction value is mapped back into the original physical space subsequently. Figure 1
summarizes the fundamental difference between the conventional practice where 1D predictors



Online prediction of respiratory motion 3013

preceding target trajectory

for s < t

1D KDE Predictor

y-displacement

x-displacement

z-displacement

1D KDE Predictor

1D KDE Predictor

Predicted target posit ion

(x,y,z)(s)

x̂(t+τ)
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Figure 1. Schematic for the conventional practice versus the proposed method. (a) The
conventional practice processes each individual coordinate direction independently; (b) the
proposed method follows the following steps: (1) mapping the original multidimensional signal
trajectory to a lower dimensional feature space; (2) performing prediction in the feature space;
(3) mapping the prediction value back to the original coordinates.

are applied to each coordinate component, respectively, and the proposed method where
the multidimensional information is processed as an integrated entity, with low-dimensional
feature learning for enhanced performance. We review the KDE-based prediction briefly and
present the proposed method in section 2. Section 3 reports the test data, the implementation
detail and the results. Section 4 summarizes the study and discusses future research directions.

2. Methods1

2.1. Background for KDE-based prediction

Let s(t) ∈ �3 denote the spatial coordinate of the target at time t, and the goal of predicting
τ time units ahead is to estimate s(t + τ) from (sampled) trajectory {s(r)|r � t} at preceding
times. We consider a length 3p covariate variable xt = [s(t − (p − 1)�), s(t − (p −
2)�), . . . , s(t)] and response yt = s(t + τ), where the parameter � determines the ‘lag
length’ used to augment the state for capturing the system dynamics. At any specific
time point t, one could retrospectively generate a collection of covariate-response pairs
zr = (xr ,yr ) ∈ �3(p+1) for r < t − τ , which are regarded as independent observations
of a random vector Z = (X, Y ) ∈ �3(p+1). The distribution of Z can be estimated with KDE
from {zr} with pZ(z) = ∑

r κ(z;zr ) where κ(z;zr ) is the kernel distribution centered at
zr . Now, given the testing covariate variable xt , one can find the conditional distribution of
pY |X(y|X = xt ) and subsequently obtain an estimate of yt .

When the Gaussian kernel and the mean estimate are used to estimate the joint density
and to generate the prediction, respectively, the KDE-based method is given in algorithm 1.

1 Material in this section is partially adopted from Ruan (2010), please refer to the original text for technical details.
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Algorithm 1 Predict ŷ from (xr ,yr ) with Gaussian kernel and mean estimate.

1: Determine covariance �x and σy for covariate and response variables.

2: Compute the weights according to

wr = exp[−(x − xr )
T �−1

x (x − xr )], (1)

3: Compute the mean estimate ŷmean = wryr∑
r wr

.

Recall that one does not need to compute the conditional distribution explicitly when the
mean estimate is used, due to the interchangeability of linear operations. Geometrically, wr

characterizes the ‘distance’ between the testing covariate and the rth training covariate, and
the final estimate yt is a convex combination of the training response yr ’s, weighted by wr.

2.2. Low-dimensional feature learning

Even though algorithm 1 does not require explicit computation of the probability distributions,
the underlying logic relies on estimating the joint probability distribution of the covariate-
response variables. In general, a large number of samples are necessary to perform kernel
density estimation in �3(p+1). However, correlation among various dimensions of the covariate
makes it highly likely that the probability distribution concentrates on a sub-manifold in this
high-dimensional space. This motivates us to seek a map φ : �3(p+1) → �q , with q < 3(p+1),
which takes points in the original 3(p + 1) ambient space to a feature space of a much lower
dimension. Considering the presence of noise in the original data, we only require this map
to preserve most of the information.

As there is no requirement for a tight embedding, i.e. the feature space is allowed to have
a higher dimension than the intrinsic manifold, we assume a separable kernel with respect to
the projection of covariate and response variables in the feature space, in order to preserve the
simple algorithmic structure in algorithm 1. Mathematically, this means the feature map φ

has an identity component and can be represented as

φ(x,y) =
[
φ̃ 0

0 I

]
(x,y) = (x̃,y).

For simplicity, we consider only linear maps for φ̃. Motivated by the geometric
interpretation of algorithm 1, we want x̃ to preserve the relative ‘distance’ among points in
the space. A natural choice for a low-dimensional and almost isometric map is the projection
onto the subspace spanned by the (major) principal components. Let the eigen decomposition
of �x ∈ �3p×3p be

�x = V diag{λj }V ′,

where V is an orthogonal matrix and λj � 0 ∀j . Upon determining the dimensionality m of
the feature space by examining the decay pattern of λj , we project the training covariates x
onto the feature space by taking the inner product between x and the columns of V, i.e.

x̃i = 〈x,vi〉,
where vi is the column of V corresponding to the ith largest eigenvalue λi , for i = 1, 2, . . . , m.

By substituting the distance between the testing covariate and the training covariates with
the distance between their projections in the principal space, algorithm 1 can be easily modified
to yield algorithm 2 for multidimensional prediction with low-dimensional feature learning.
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Algorithm 2 Multidimensional prediction with low-dimensional KDE-based feature
learning.

1: Estimate covariance �x from the training covariates.

2: Perform eigen decomposition on �x and define the projection matrix P with columns
being the first m principal components.

�x = V diag{λj }V ′, P (:, i) = V (:, i) for i = 1, 2, . . . , m.

3: Project the training and testing covariates onto the subspace by

x̃r = P ′xr∀r; x̃ = P ′x.

4: Compute the weights according to

wr = exp[−β‖x̃ − x̃r‖2], (2)

where β is a preset parameter inversely proportional to the kernel bandwidth.

5: Compute the mean estimate ŷmean = wryr∑
r wr

.

2.3. Technical remarks

• In general, it is difficult to determine the number of principal components to keep (m in
algorithm 2). Fortunately, the spectrum of 3D respiratory trajectories (e.g. (3)) presents a
clear and sharp cutoff. Intuitively, when the physical coordinates are strongly correlated,
it is expected that the intrinsic dimensionality of the feature space would be close to
the dimensionality of a single physical coordinate m ≈ p, from which the other two
coordinates can be inferred. This observation is supported with experimental data in
section 3.

• As in the case of a 1D KDE, the parameter p controls the number of augmented states, thus
the order of dynamics for inference. It is necessary that p � 2 to capture the hysteresis of
the respiratory motion. On the other hand, choosing a large p implies a higher dimensional
feature space and requires more training sample as a consequence. From our experience,
p = 3 offers a proper tradeoff for describing dynamics without suffering the ‘curse of
dimensionality’. Similarly, the choice of the lag length � reflects the tradeoff between
capturing dynamics and being robust toward observation noise. Following a similar
philosophy as (Ruan et al 2008), it can be shown that the specific choice of � has only a
marginal effect on the prediction performance.

• Algorithm 2 uses an identity scaling β−1I for kernel covariance, as opposed to the �x in
algorithm 1. This is because the PCA step provides a natural means to distinguish between
two different contributors to data variation: the major variations due to the semiperiodic
dynamics and the minor variations due to random noise. The former distributes the
training covariate xt samples to different places in the ambient space based on their
dynamic state, and the latter associates noise-induced uncertainty with each sample.
Therefore, the logical way to set the kernel covariance is to use the covariance estimate
in the minor component. As random noise is typically isotropic, it is reasonable to use
a scaled identity matrix for kernel covariance. Algorithm 1 does not have access to this
decomposition information, and the scaled data covariance is just a ‘poor man’s method’
to select a reasonable kernel covariance.
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• An estimate for �x can be obtained by taking the empirical covariance of the training
covariate values. As the training covariate-response collection gets updated in real-time,
recomputing �x and its eigen decomposition at each instant could be computationally
expensive. Note, however, that gradual updates in the training collection only cause mild
perturbation in the covariance estimate, with a minimal impact on the energy concentration
directions. With these observations, it is feasible to update the principal space much less
frequently than updating the training set—in fact, it is reasonable to use a static principal
space in most situations.

• Temporal discounting can be incorporated in algorithm 2 exactly the same way as in Ruan
(2010). We omit the discussion here to focus on the low-dimensional feature-based KDE
learning in multidimensional prediction.

3. Experimental evaluation and result analysis

3.1. Data description

To evaluate the algorithm for clinically relevant intrafraction motion, patient-derived
respiratory motion traces were acquired. 159 datasets were obtained from 46 patients treated
with radiosurgery on the Cyberknife Synchrony system at Georgetown University under an
IRB-approved study (Suh et al 2008). The displacement range for a single dimension was
from 0.7 mm to 72 mm. To avoid the complexity of accounting for varying data lengths in
generating population statistics, we only use the first 60 s of data from each trajectory in our
tests.

3.2. Experimental details and results

3.2.1. Experimental setup. We tested the proposed method with two sets of lookahead
lengths. It has been previously determined that a DMLC tracking system has a system
response time of 160 ms with Varian RPM optical input (Keall et al 2006), and a response time
of 570 ms with a single kV image guidance, accounting for all image processing time (Poulsen
et al 2010). The covariate variable is composed of three states (p = 3), with approximately
half a second in between (� ≈ 0.5 s). The training data consist of covariate-response pairs
constructed from observations in the most recent 30 s. When samples are obtained at f Hz,
this corresponds to (30 − (p − 1)�− τ)f covariate-response pairs. For baseline comparison,
we generated KDE-based prediction results along each individual coordinate according to
algorithm 1, with kernel covariance independently calculated, under the same configuration
condition.

The dimensionality of the feature space is obtained by finding the cutoff points in the
spectrum of the training covariate covariance. An obvious cutoff is almost always present,
due to the intrinsic difference in pattern and scale between system dynamics and observation
noise. This behavior is illustrated with a case study in section 3.2.4 (cf equation (3))

The performance of the prediction algorithm was evaluated retrospectively with the
Euclidean distance between the predicted and the observed positions in 3D. For each case,
the root mean squared error (RMSE) was also computed and used as one sample in the
paired Student’s t-test to compare the performance between independent prediction along
each individual coordinate and the proposed method.

3.2.2. Pointwise prediction error analysis. Figure 2 reports the histogram of the pointwise
error. Qualitatively, the proposed method results in prediction errors more concentrated in the
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Figure 2. Histogram of the pointwise 3D Euclidean prediction error. Left column: lookahead
160 ms; right column: lookahead 570 ms.

Table 1. Statistical summary of the pointwise prediction error (in mm).

160 ms lookahead 570 ms lookahead

Independent Multi-D prediction w/ Independent Multi-D w/
Statistics prediction feature prediction feature

Mean 0.76 0.52 1.16 0.88
90% percentile 1.80 1.08 2.76 2.01
95% percentile 2.43 1.48 3.67 2.82

Table 2. Statistical summary of the pointwise error (in mm) in each coordinate for 160 ms
lookahead prediction.

Independent prediction Multi-D prediction w/ feature learning

Statistics x y z x y z

Mean −0.0298 −0.0260 −0.0122 −0.0005 −0.0061 −0.0085
std 0.73 0.68 0.56 0.45 0.43 0.41
90% quantile (−1.27 0.97) (−1.21 0.92) (−0.77 0.67) (−0.70 0.61) (−0.67 0.60) (−0.54 0.50)
95% quantile (−1.75 1.41) (−1.64 1.27) (−1.12 1.05) (−0.96 0.87) (−0.93 0.83) (−0.78 0.74)

small end, with sharper dropoff and narrower tails, compared to predicting each coordinate
independently. Table 1 corroborates the same observation quantitatively.

To study the bias and variance of the predictions, we also recorded the 3D vector prediction
error and plotted the directional error histogram in figures 3 and 4. Tables 2 and 3 report
the mean, standard deviation (std), central 90% and 95% quantiles for each of the x, y, z

coordinate. Both methods are unbiased for different lookahead lengths, but the proposed
multidimensional method with a low-dimensional feature learning method provides uniformly
smaller standard deviation with about 40% reduction, resulting in less prediction error overall.
The quantile analysis presented in tables 2 and 3 also shows that the proposed method provides
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Figure 3. Histogram of the pointwise error in each direction for 160 ms lookahead prediction. Top
row: prediction along each individual direction; bottom row: multidimensional prediction with
low-dimensional feature learning. Each column represents a different direction.
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row: prediction along each individual direction; bottom row: multidimensional prediction with
low-dimensional feature learning. Each column represents a different direction.
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Figure 5. Comparison of the case-wise 3D RMSE. Left column: lookahead 160 ms; right column:
lookahead 570 ms.

Table 3. Statistical summary of the pointwise error (in mm) in each coordinate for 570 ms
lookahead prediction.

Independent prediction Multi-D prediction w/ feature learning

Statistics x y z x y z

Mean 0.0119 0.0081 −0.0053 0.0134 0.0125 −0.0011
Std 1.14 1.08 0.84 0.85 0.81 0.66
90% quantile (−1.85 1.64) (−1.81 1.53) (−1.16 1.04) (−1.26 1.19) (−1.28 1.19) (−0.87 0.82)
95% quantile (−2.68 2.32) (−2.58 2.01) (−1.65 1.61) (−1.84 1.75) (−1.82 1.61) (−1.29 1.26)

prediction values that are much more concentrated around the true values, reducing the quantile
edge values by 30%.

3.2.3. Case-wise root mean squared error (RMSE). Because of variations in individual
respiratory patterns, it is necessary to examine the cases where large prediction error
occurs in detail. We computed the case-wise 3D root mean squared prediction error
(RMSE) for independent prediction along individual coordinates and the proposed method
of multidimensional prediction with low-dimensional feature learning, both based on KDE
(figure 5). The proposed method yields almost uniformly lower RMSE: it has similar
performance to the independent prediction method in the low error regions but demonstrates
its advantage for the more challenging cases. With paired Student’s t-test, the null hypothesis
was rejected with strong evidence for prediction lookahead lengths 160 ms and 570 ms, with
p-values of 3.5 × 10−14 and 9.2 × 10−15, respectively.

3.2.4. An individual case study and its implications. To better understand the behavior of
the algorithm, we have closely examined the cases with relatively high prediction errors and
present the results for case #142 here. Figure 6 illustrates the respiratory trace. The 3D RMSE
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Figure 6. Respiratory trajectory: samples from the most recent 30 s were used as training data for
the KDE. (x, y, z) data are depicted in blue, green and red, respectively.

with independent prediction are 5.01 mm and 7.18 mm for 160 ms and 570 ms, respectively,
and reduce to 2.45 mm and 4.11 mm by the proposed method.

The eigen decomposition from the initial training yields the following eigenvalue/vectors:

e1 = 474.65, v1 = [−0.38 −0.31 0.29 −0.39 −0.32 0.30 −0.39 −0.31 0.30 ];
e2 = 35.71, v2 = [0.47 0.38 −0.36 0.01 0.01 −0.01 −0.47 −0.38 0.36 ];
e3 = 23.30, v3 = [−0.28 −0.23 0.22 0.54 0.44 −0.42 −0.27 −0.22 0.21 ];
e4 = 0.01, v4 = [0.30 0.09 0.49 0.30 0.09 0.49 0.29 0.09 0.48 ];
e5 = e6 = e7 = e8 = e9 ≈ 0. (3)

A sharp cutoff after the third component is clear in the spectrum. Note that the ith coordinate
of the projection x̃ is given by x̃i = 〈x,vi〉, the inner product between the original covariate
and the eigenvector. By identifying the corresponding components in x and collecting terms,
the first feature component reads

x̃1(t) ≈ −0.39[x(t − 2τ) + x(t − τ) + x(t)]

− 0.31[y(t − 2τ) + y(t − τ) + y(t)]

+ 0.30[z(t − 2τ) + z(t − τ) + z(t)]. (4)

The summation along each individual coordinate acts as a low pass filter that captures the mean
trend. The sign change in the weighting for z from those for x and y captures the opposite
trends (or roughly a half-cycle offset). It is quite clear that the first feature component x̃1

describes the zeroth-order dynamics—drift.
Analogously, the second feature component reads

x̃2 ≈ −0.47[x(t) − x(t − 2τ)]

− 0.38[y(t) − y(t − 2τ)]

+ 0.36[z(t) − z(t − 2τ)]. (5)
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Figure 7. Covariate trajectories in the 3D ambient physical space: (a) trajectories of first, second
and third covariate; (b) trajectories of fourth, fifth and sixth covariate; (c) trajectories of seventh,
eighth and ninth covariate.
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Figure 9. Comparison of 160 ms ahead prediction results. Solid line: observed target position;
dashed line: predicted target position. Red: superior–inferior displacement; blue: anterior–
posterior displacement; green: left–right displacement.

Recall that the first-order differential operation can be approximated with the three-stencil
difference form u′(t) ≈ u(t)−u(t−2�)

2�
. The difference term along each coordinate corresponds

to a differential operation, as in calculating numerical velocity. The change of sign across
coordinates can be interpreted the same as in the x̃1. In summary, the second feature component
x̃2 encodes the (collective) first-order dynamics—velocity.

The third projection component can be rewritten approximately as

x̃3 ≈ −0.27[x(t) + x(t − 2τ) − 2x(t − τ)]

− 0.22[y(t) + y(t − 2τ) − 2y(t − τ)]

+ 0.21[z(t) + z(t − 2τ) − 2z(t − τ)]. (6)

Recall u′′(t) ≈ u(t)+u(t−2�)−2u(t−�)

�2 , and we recognize that the difference in (6) along each
individual coordinate captures the second-order differential information. Therefore, the third
feature component x̃3 encodes the second-order dynamics—acceleration.

The sharp cutoff occurs after the third component, and there is no longer clear physical
interpretation for other eigenvectors. It is reasonable to conjecture that the energy in ek, for
4 � k � 9, is induced by observation noise.

This analysis supports the use of a three-dimensional feature space. Figures 7 and 8
illustrate the original covariate and the projected covariate trajectories, respectively. It can be
seen that the major challenge is the large mean drifts in all covariate components—this poses
a major obstacle for direct learning in the original space for all methods, as the predictor may
have ‘never seen’ any training covariate that ‘resembles’ the testing covariate. In contrast,
the projected covariate has one component that clearly captures the mean drift and the other
components reflect consistency in first- and second-order dynamics, making it more feasible
for the KDE-based method to identify similarity between the testing covariate and a subset
of the training covariates. Figure 9 and figure 10 report the prediction results for 160 ms and
570 ms lookahead lengths, respectively.
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Figure 10. Comparison of 570 ms ahead prediction results. Solid line: observed target position;
dashed line: predicted target position. Red: superior–inferior displacement; blue: anterior–
posterior displacement; green: left–right displacement.

3.3. Discussion

• The sharp cutoff in the spectrum of the training covariance provides strong evidence
for the dimensionality of the feature space. Furthermore, the physical interpretation
of the principal directions (drift, velocity, acceleration) indicates the universality of the
feature space, which justifies the use of the same feature space throughout the trace,
rather than recalculating a different projection for every training set update. The linear
forward and backward mapping with the principal vectors requires only ∼ O(p) FLOPs
for each prediction in addition to a 1D KDE-based prediction, whose computation time
is negligible compared with the overall system latency.

• The efficacy of the KDE-based prediction along an individual coordinate has been
shown in Ruan (2010). The fact that the proposed method compares favorably to
this already high-performance benchmark demonstrates the validity of the dimension
reduction rationale. Furthermore, the proposed method provides uniform improvement,
presenting itself as an ‘all-winner’ in various situations. This is also reflected in the paired
Student’s t-test results, where the p-values for both prediction lengths were in the order
of 10−15 10−14.

• Feature extraction is a technique widely used in support vector machine (SVM) learning.
Our method differs from SVM learning in that the complexity of kernel density estimation
in high-dimensional space drives us to consider a feature space that is lower in dimension
than the original one, as opposed to higher dimensional embedding in SVM. We lose
information with the projection, but benefit by better utilizing the remaining information
in the reduced feature space. In general, the feature map φ can be nonlinear, a central
topic in nonlinear manifold learning, and techniques such as local linear embedding
(LLE) (Roweis and Saul 2000), isomap (Tenenbaum et al 2000) may be used. We feel
that the extra complexity associated with nonlinear embedding can be hardly justified in
the present system setup, given the success of the current algorithm; yet they may be
useful for other motion input/output, such as fully image-based monitoring.

• As mentioned in the introduction, kernel density estimation in the original covariate-
response space requires much more training data. Otherwise, there is a risk of the testing
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covariate falling into a ‘probability vacuum’, with no training covariates close by, resulting
in artificial prediction values and large errors.

4. Conclusion and future work

Multivariate prediction is a natural framework to study respiratory motion that has correlation
across different spatial coordinates. This paper proposes a simple method to map the
high-dimensional covariate variables into a lower dimensional feature space using principal
component analysis, followed by kernel density estimation in the feature space. This method
manages to alleviate the data requirement for estimation in high-dimensional space, effectively
lifting the ‘curse of dimensionality’. Furthermore, close examination of the eigenvalues and
eigenvectors from the PCA yields physical interpretations of the feature space and provides
a natural separation of the system dynamics from the observation noise. The efficacy of
the proposed method has been demonstrated by predicting for various lookahead lengths
with patient-derived respiratory trajectories. The feature extraction-based multidimensional
prediction method outperforms prediction along individual coordinates almost uniformly, with
a clear advantage for the ‘hard-to-predict’ cases. The additional improvement in narrowing
the tail of the error distribution over the already high-performance benchmark KDE method
promises universally small prediction errors. On a methodological level, this work points
out a direction in efficiently processing and learning with high-dimensional data, a common
problem in medical signal processing.

The proposed method is now being integrated into a prototype experimental DMLC
tracking system at Stanford University. As new observations are acquired, the instantaneous
prediction error can be evaluated and heuristics of change detection and management
mechanism (such as beam pause) is being investigated. The proposed method will be
applied to various real-time monitoring modalities, including Varian RPM optical, Calypso
electromagnetic and combined kV/MV image guidance. When fluoroscopic images are taken
as input, the low-dimensional feature-based learning provides a pathway toward processing the
image data directly, as opposed to the current practice where only extracted marker positions
are pipelined into the prediction module. Direct image intensity-based prediction will be the
focus of future investigations.

It is also natural to extend the application of the proposed method to radiosurgery and
high intensity focused ultrasound treatment, where real-time target localization is crucial for
surgery/delivery accuracy.
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