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Abstract
Real-time motion management is important in radiotherapy. In addition to
effective monitoring schemes, prediction is required to compensate for system
latency, so that treatment can be synchronized with tumor motion. However, it
is difficult to predict tumor motion at all times, and it is critical to determine
when large prediction errors may occur. Such information can be used to pause
the treatment beam or adjust monitoring/prediction schemes. In this study,
we propose a hypothesis testing approach for detecting instants corresponding
to potentially large prediction errors in real time. We treat the future tumor
location as a random variable, and obtain its empirical probability distribution
with the kernel density estimation-based method. Under the null hypothesis,
the model probability is assumed to be a concentrated Gaussian centered at
the prediction output. Under the alternative hypothesis, the model distribution
is assumed to be non-informative uniform, which reflects the situation that
the future position cannot be inferred reliably. We derive the likelihood ratio
test (LRT) for this hypothesis testing problem and show that with the method
of moments for estimating the null hypothesis Gaussian parameters, the LRT
reduces to a simple test on the empirical variance of the predictive random
variable. This conforms to the intuition to expect a (potentially) large prediction
error when the estimate is associated with high uncertainty, and to expect an
accurate prediction when the uncertainty level is low. We tested the proposed
method on patient-derived respiratory traces. The ‘ground-truth’ prediction
error was evaluated by comparing the prediction values with retrospective
observations, and the large prediction regions were subsequently delineated
by thresholding the prediction errors. The receiver operating characteristic
curve was used to describe the performance of the proposed hypothesis
testing method. Clinical implication was represented by miss detection rate
and delivery efficiency. Both characterizations demonstrated the promising
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results and provided insight into the tradeoffs in the detection task. This
study opens the discussion on real-time analysis of prediction accuracy and
promises important information in automatically adjusting treatment and/or
target monitoring schemes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The goal of radiotherapy is to deliver ablative radiation to tumors and to best spare surrounding
normal structures. For highly mobile tumors, motion management is crucial and usually
follows the streamline of (1) accurately monitoring the tumor target; (2) predicting the tumor
location at the instant of delivery, to account for system latency; (3) managing the treatment to
maintain the alignment between the external treatment beam and the internal tumor target, by
either passively gating or adaptive tracking (Keall et al 2002, Nuyttens et al 2006). A powerful
treatment management mechanism requires not only the prediction of the tumor location at
beam delivery but also the uncertainty associated with such prediction: a prediction with low
uncertainty may be used to move the beam to track the tumor, while a prediction with high
uncertainty suggests a more cautious motion management scheme and may lead to a beam
pause decision when necessary.

The location-prediction problem has received much attention and yielded a large body of
prediction algorithms, including but not limited to regression (Vedam et al 2004, Ruan et al
2007, McCall and Jeraj 2007, Ernst et al 2007), Kalman filter and its variations (Putra
et al 2008), neural network and fuzzy logic inference (Kakar et al 2005, Isaksson et al 2005,
Murphy and Dieterich 2006). These studies rely on the assumption that a consistent and
deterministic inference structure exists between the observable historical segment and the
unknown tumor location to be predicted. The basic setting is deterministic: a ‘true’ prediction
value is sought after. There notion of uncertainty needs to be substituted with its counterpart
of ‘prediction error’ in this context. Even though it may be possible to ‘learn’ the behavior
of the prediction error, the deterministic assumptions make such task quite difficult. In fact,
there is not yet any study on the prospective characterization of prediction errors.

More recently, studies have emerged where the future tumor location is treated as a random
variable rather than a deterministic quantity (Ruan 2010). The rationale for such statistical
setting is to admit the intrinsic stochasticity of the tumor motion and to allow identical historical
segments to evolve into different future states. An important outcome is that the prediction
algorithm outputs a pdf for the future tumor location, and a numeric estimate is only obtained
via a post-processing step, by taking the mean, median or mode estimate of the underlying
random variable.

The intermediate result of the pdf provides rich distributional information of the random
future tumor location. In particular, the first moment yields an efficient location predictor (Ruan
2010). The second moment, on the other hand, captures the variability of the potential future
tumor location and describes the uncertainty associated with its estimate. We review the KDE-
based prediction method and present the derivation of the corresponding uncertainty estimate
in section 2. Section 3 describes the test data, the implementation procedure and reports the
experimental results. Section 4 provides some structural discussions and summarizes this
study.
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2. Methods

2.1. Basic inference and hypothesis testing setup1

For simplicity, we focus our analysis on a 1D discrete-time trajectory s. At time tk, the goal of
prediction is to estimate the value of sk+L given samples si for i = 1, 2, . . . , k, where L is the
prediction length corresponding to system latency. Let p be the number of augmented states
for sufficient description of the system dynamics and � be a ‘lag length’ chosen to balance the
effect of dynamics and observation noise (Ruan et al 2007); then we can redefine the covariate
xi = [si−(p−1)�, si−(p−2)�, . . . , si] and the response yi = si+L. The prediction goal can be
rephrased as estimating the test response yk from the observed test covariate xk , given known
covariate/response pairs (xi ,yi ) for i = 1, 2, . . . , M = k − L.

Obviously, the magnitude of prediction error depends on the choice of prediction
algorithms, and we adopt a KDE-based method with demonstrated efficacy (Ruan 2010).

2.2. KDE-based estimation of test response distribution

We regard the observed covariate-response pairs (xi ,yi ) as realizations of random
vector/variables X and Y and define a random vector Z = (X, Y ) ∈ �p+1. With independent
samples zi = (xi ,yi ), i = 1, 2 . . . , M , the distribution of Z can be obtained via KDE (Duda
et al 2001):

p(zk) = 1

M

M∑
i=1

ker(zk|zi ). (1)

where the local density kernel ker(zk|zi ) is assumed to be a spatial invariant Gaussian pdf
with the block diagonal covariance �z = diag

{
�ker,x, σ

2
ker,y

}
, where �ker,x and σ 2

ker,y are the
covariance for the covariate and response variables, respectively. The conditional distribution
of the test response p(yk|xk) turns out to be a Gaussian mixture,

p(yk|xk) = p(zk)/p(xk)

= 1

M

∑
i

ker((xk,yk)|zi )

= 1

C

∑
i

wi exp
[−‖yk − yi‖2/2σ 2

ker,y

]
, (2)

where the wight wi determines the contribution of the sample response yi and is given by the
relative closeness of the sample covariate xi to the test covariate xk:

wi = (2π)−p/2 det(�ker,x)
−1/2 exp[−(xk − xi )

T �−1
ker,x(xk − xi )]. (3)

The normalization parameter C is independent of both i and yk .

2.3. The first and second moments

Given the approximate distribution of the response random variable in (2), it is natural to use
the first moment as the prediction output. We also derive its second moment that will be used
in section 2.4.

1 Material in section 2.1 on the KDE setup is partially adopted from Ruan (2010); please refer to the original text for
technical details.
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2.3.1. The first moment: prediction with the mean estimate. Given the conditional
distribution (2), the mean estimate reads

ŷ = E[Yk|xk] = 1

C̃

∫ ∑
i

ywi exp
[−‖y − yi‖2

/
2σ 2

ker,y

]
dy

= 1∑
wi

∑
i

wiyi . (4)

It is the weighted sum of the training response values and can be computed efficiently.
Furthermore, the normalization parameter C̃ is eliminated by cancellation.

2.3.2. The second moment: the variance estimate. The variance of a random variable
measures its uncertainty/variability:

σ̂ 2
y = E[(Yk − E(Yk|xk))

2|xk]

= 1

C̃

∫ ∑
i

(y − ŷk)
2wi exp

[−‖y − yi‖2
/

2σ 2
ker,y

]
dy

= σ 2
ker,y +

∑
i

wi∑
i wi

(yi − ŷk)
2, (5)

where σ 2
ker,y is the y-direction variance in KDE, reflecting the intrinsic uncertainty in the

response variable due to variability of breathing. The second term of the weighted sum reflects
the distance between the training responses and the prediction estimate. This conforms to our
intuition that the further way the prediction is from the ‘known’ training set, the less confidence
we have (higher uncertainty) on the estimate. The derivation of (5) takes advantage of the
Gaussian mixture structure and yields a computationally efficient form. Derivation details are
provided in section 2.1.

2.4. Hypothesis testing

For each time k, the following null and alternative hypotheses are to be tested:

H0: the prediction ŷk is accurate, i.e., close to the realization of yk;
H1: the prediction ŷk is highly uncertain and may be far from the realization of yk.

To perform the hypothesis testing, we need to make statistical assumptions. Section
2.2 estimates the empirical distribution of yk , and the corresponding mean is obtained in
section 2.3 as the prediction ŷk . When the prediction value is strongly supported by the
training samples, the conditional pdf of yk should be concentrated, and we can assume
p(yk|xk) to be a Gaussian distribution N

(
μk, σ

2
k

)
for the null hypothesis. On the other hand,

high prediction uncertainty arises when the empirical distribution is not informative enough.
It is typical in statistics to assume uniform distribution in this case. In short, the statistical
formulation of the hypothesis testing is given by

H0: (yk|xk) ∼ N
(
μk, σ

2
k

);
H1: (yk|xk) ∼ U(δL, δU ),

where δL and δU are the lower and upper boundary for the uniform distribution and are assumed
to be constants across all k.
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In order to perform the hypothesis test, we need to determine the parameters in the null
hypothesis first. With access to the empirical distribution p(yk|xk), we adopt the method
of moments (MOM) (Hansen 1982) to estimate the parameters for the assumed Gaussian
distribution, by matching the first and second moments (4), (5). This results in

μk = ŷk = 1∑
wi

∑
i

wiyi;

σ 2
k = σ̂ 2

y = σ 2
ker,y +

∑
i

wi∑
i wi

(yi − ŷk)
2.

(6)

From the detection perspective, the prediction value ŷk can be treated as a realization
of the future location random variable, distributed according to p(yk|xk). Therefore, the
likelihood ratio test (LRT) (Mood et al 1974) reads

�(ŷk) = N (ŷk;μk, σk)

U(ŷk; δL, δU )

∝ 1

σk

exp
[−(

ŷk − μk

)2/
σ 2

k

]

= 1

σk

. (7)

The second line is obtained by dropping the constants from the uniform distribution as well as
the 1√

2π
factor in the Gaussian density. The third line is obtained by identifying the prediction

value ŷk as the mean of the random variable yk under the conditional distribution (4).
A typical decision rule for the LRT reads

⎧⎨
⎩

if � > c, do not reject H0;
if � < c, reject H0;
reject with probability q if � = η.

(8)

One could choose the values of c and q to satisfy a preset significance level α, so that
the probability of mistakenly rejecting the null hypothesis is kept under the stated probability
α. In this work, we adopt the Neyman–Pearson (Neyman and Pearson 1933) frequentist
perspective and examine the probability of both type I and type II errors as the value of c
varies. Furthermore, since the variance σk is a continuous variable, � = 1

σk
has zero measure

at the point c, indicating that a ‘tie’ rarely occurs, and we ignore this event hereafter.
We rewrite the LRT so that the decision rule is on σk rather than on its reciprocal:

{
if σk < η, do not reject H0, ‘likely good prediction’;
if σk > η, reject H0, claim H1, ‘potentially large prediction error’.

(9)

This decision rule suggests to reject the null hypothesis when the estimated variance is
high. In other words, a large variance estimate at tk indicates that the prediction ŷk may be
subject to a large prediction error. This conforms to our intuition that if the underlying variable
is highly volatile, then its specific realization, which can only be observed retrospectively,
cannot be predicted precisely.
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2.4.1. Algorithmic description for location prediction and risk detection. Algorithm 1
summarizes the operation flow for simultaneously predicting the future target location and
detecting potentially large prediction errors.

Algorithmic 1 real time location prediction and detection of a potentially large
prediction error.

1: Determine covariance �ker,x and σker,y for covariate and response variables.
2: Preset the discrimination threshold η.

3: for each k do
4: Compute the weighting according to (3).
5: Compute the mean estimate ŷk = wiyi∑

i wi
, equivalent to (4).

6: Compute the variance estimate σ̂ 2
k = σ 2

ker,y + 1∑
i wi

∑
i wi(yi − ŷk)

2.

7: If σ̂k > η, claim a potentially large prediction error, and trigger risk management
mechanisms.

8: end for

Although the derivations in section 2.2 and section 2.3 involve characterizing various
probability density functions and integrations with respect to them, algorithm 1 is very simple
with no explicit computation of the pdfs or integrations at all. This property leads to efficient
implementations critical for real-time executions.

3. Experimental evaluation and results

3.1. Experiment setup

To evaluate the performance of the proposed large-prediction-error detector, we used patient-
derived traces acquired with the Cyberknife Synchrony system at Georgetown University (Suh
et al 2008). The KDE-based method (Ruan 2010) was used to predict tumor locations 160 ms
and 570 ms ahead, spanning the range of typical system latencies (Keall et al 2006, Poulsen
et al 2010). The specific implementation in this paper used three-dimensional augmented
covariate variables so that xi = [si−2�, si−�, s], with � corresponding to 0.5 s delay between
the consecutive coordinates of the variate x. A moving window of 20 s was used to dynamically
update the training set {(xi ,yi )}, and the covariance matrices (�ker,x, σker,y) were estimated
from their corresponding empirical values from the training set. In general, the performance
of the KDE-based prediction algorithm is quite insensitive to the numerical values of these
setup parameters (Ruan 2010).

The ground-truth2 prediction errors were obtained by computing the discrepancy between
the tumor locations predicted in real time and their corresponding retrospective observations:

ek = ŷk − yk. (10)

Subsequently, the ground-truth large-prediction-error regions were identified by
comparing such point-wise discrepancy (10) with a preset prediction error tolerance ε. In

2 Strictly speaking, ground truth is unaccessible, due to the presence of measurement noise. In addition, the traces
from Cyberknife data are partially inferred from a correlation model. However, for the purpose of this study, we treat
the monitoring mechanism as a black-box module and focus on prediction.
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general, this tolerance reflects the accuracy requirement of the treatment system and motion
management mechanism. In our experiment, we used ε values of 1, 2, 3 and 4 mm:
{ |ek| < ε ⇒ point k is predicted with satisfactory accuracy, H0 true;

|ek| � ε ⇒ point k is predicted with prediction error larger than tolerance, H1 true.

The online detection results were obtained according to (9). The performance of the
proposed detection method was quantified with the receiver operating characteristic (ROC)
curve, by plotting the true positive rate (sensitivity) versus the false positive rate (1-specificity),
as the discrimination threshold η varies. More specifically,

true positive rate (TPR) = #{claim H1}/#{H1 true};
false positive rate (FPR) = #{claim H1}/#{H0 true}.

(11)

It is also of clinical interest to understand the relationship between the likelihood of failing
to detect large errors (miss) versus delivery efficiency. Requiring high delivery efficiency
means being oblivious to relatively weak indications of prediction errors (setting η high),
resulting in higher risk of missing. We measured the delivery efficiency as the ratio of
the beam-on time to the overall time duration, assuming detection of large errors triggers
beam pause. To characterize the clinical tradeoff, we examined the relationship between the
following two quantities:

miss/false negative rate (FNR) = #{claim H0}/#{H1 true};
delivery efficiency = #{claim H0}/{total number of tests performed}. (12)

3.2. Results

The KDE-based prediction method has been previously demonstrated as efficient and accurate,
especially for approximately self-reproducible trajectories (Ruan 2010). For 159 Cyberknife
synchrony traces, the collective performance of the proposed large error detection scheme for
160 ms and 570 ms prediction is depicted in figures 1 and 2, respectively. Large errors are
defined as prediction errors exceeding 1, 2, 3 or 4 mm. We see that the proposed method
performs well, as reflected by the ROC and clinical tradeoff curves. The ROC curves are close
to the upper-left corner, indicating high sensitivity as well as high specificity. From the clinical
tradeoff curve, we see that high delivery efficiency can be achieved with slight sacrifice of the
detection sensitivity. Comparing across different definitions of a ‘large prediction error’, one
observes incremental improvement of detection performance when the threshold for a ‘large
error’ increases (e.g. 4 mm versus 1 mm), as random noise becomes less likely to corrupt the
true H0/H1 affiliation.

For a closer performance examination, we have purposely selected two challenging cases
for prediction.

The first trajectory exhibits significant drifting, which makes it difficult for the KDE
to learn the proper conditional pdf from training covariate/response pairs. Even so, the
KDE method performs reasonably well, yielding a root mean squared error (RMSE) of
0.50 mm for 160 ms prediction and a RMSE of 1.19 mm for 570 ms prediction, as seen in
figures 3 and 6. Furthermore, the 160 ms prediction error is uniformly below 2 mm,
so the only applicable detection task is to identify the prediction errors exceeding 1 mm
(figure 4). Figure 5(a) illustrates the ROC curve, the clinical miss rate versus efficiency tradeoff
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Figure 1. Detection performance for 160 ms prediction length. Left column: ROC curve for
detecting the prediction error exceeding 1 mm. Blue dots represent the performance in terms of
FPR and TPR at various discrimination thresholds η, and the diagonal dashed green line illustrates
the detection performance with a random decision rule. Right column: miss rate versus delivery
efficiency.
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Figure 2. Detection performance for 570 ms prediction length. Left column: ROC curve for
detecting the prediction error exceeding 1 mm. Blue dots represent the performance in terms of
FPR and TPR at various discrimination thresholds η, and the diagonal dashed green line illustrates
the detection performance with a random decision rule. Right column: miss rate versus delivery
efficiency.
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and (b) large prediction error region.
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Figure 5. Detection performance. Left column: ROC curve for detecting the prediction error
exceeding 1 mm. Blue dots represent the performance in terms of FPR and TPR at various
discrimination thresholds η, and the diagonal dashed green line illustrates the detection performance
with a random decision rule. Middle column: miss-detection rate versus delivery efficiency. Right
column: an exemplary detection trace. Blue dots depict the prospectively estimated occurrence of
the large prediction error, and red dots show the ‘ground-truth’.
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Figure 6. Observed trajectory versus real-time prediction for 570 ms. The root mean squared
prediction error was 1.19 mm. An uncertainty band was generated by adding to and subtracting
from the prediction value the estimated standard deviation σ̂k .

curve and one exemplary detection time series corresponding to a single point on the ROC
curve.

For 570 ms prediction, the largest prediction error exceeds 3 mm (figure 7), and
we perform detection for errors exceeding 1, 2 and 3 mm. Figure 8 reports the ROC
curve, the clinical tradeoff curve and an exemplary detection trace for each error definition,
respectively.

The second trajectory presents the biggest challenge among all Synchrony traces under
test—it exhibits irregularity in trend, oscillatory magnitude, as well as phase perturbation.
The RMSEs for 160 ms and 570 ms prediction are 1.85 mm and 3.34 mm, respectively (cf
figures 9 and 12), with the maximum prediction errors exceeding 5 mm (figures 10 and 13).
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Figure 7. Retrospective identification of regions with large prediction errors. (a) Prediction error
and (b) regions of the large prediction error.

The same hypothesis testing procedure has been performed and the results are reported in
figures 11 and 14.

4. Discussions and concluding remarks

Despite the intensive studies on prediction methods for respiratory motion, rigorous research
on prospectively estimating prediction performance remains elusive. This is because
physiological/physical motion often deviates from strictly defined mechanical models, and
the noise hardly follows any simple statistical distribution. In this study, we take advantage
of the empirical pdf, developed with the KDE method, and interpret the variance estimate
as a measure of ‘uncertainty’, a notion tightly related to prediction confidence. The
problem of prospectively detecting large prediction errors greater than a tolerance is cast
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Figure 8. ROC curves and exemplary detection traces for prediction errors exceeding 1, 2 and
3 mm, respectively.

in a binary hypothesis testing setup. The null hypothesis is posed as a Gaussian distribution
concentrated around the prediction estimate and the alternative hypothesis invokes a non-
informative uniform distribution. The LRT is used to determine whether sufficient evidence
exists to reject the assumption that the prediction value is a representative realization of a
Gaussian random variable defined by the null hypothesis. We use the MOM to estimate the
parameters for the null hypothesis and reduce the corresponding LRT to a simple comparison
rule between the estimated variance of the test response variable and a discrimination
threshold. Thanks to the KDE of the empirical estimate, which represents the pdf of the
prediction as a Gaussian mixture; the prediction variance can be computed efficiently without
explicit integration. This promises feasibility for real-time implementation of the detection
strategy.

The ROC is a powerful way of characterizing detector performance, when the truth is
available. In our experiments, the notion of ‘ground-truth’ needs to be interpreted appropriately
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Figure 9. Observed trajectory versus real-time prediction for 160 ms. The root mean squared
prediction error is 1.85 mm. An uncertainty band is generated by adding to and subtracting from
the prediction value the estimated standard deviation σ̂k .
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and (b) regions of the large prediction error.
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Figure 11. ROC curves and exemplary detection traces for prediction errors exceeding 1, 2, 3,

and 5 mm, respectively.
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Figure 12. Observed trajectory versus real-time prediction for 570 ms. The root mean squared
prediction error is 3.34 mm. An uncertainty band is generated by adding to and subtracting from
the prediction value the estimated standard deviation σ̂k .
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Figure 13. Retrospective identification of regions with large prediction errors. (a) Prediction error
and (b) regions of the large prediction error.
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Figure 14. ROC curves and exemplary detection traces for prediction errors exceeding 1, 2, 3
and 5 mm, respectively.

and taken with caution. Firstly, all observations were acquired in the presence of noise.
Furthermore, observations acquired with a Synchrony system are also subject to modeling
error in internal/external inference. More importantly, an instantaneous observation is a
single sample of the possible outcome at the time of acquisition, given the stochastic nature of
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the underlying motion. Therefore, the observation is representative of the true tumor location
only to a certain degree. In other words, a large discrepancy between the prediction and the
retrospective observation value for a single trace may not necessarily imply high likelihood
of a large prediction error for another realization of the same underlying trace. This suggests
that in general ROC curves on the left columns of figures 5, 8, etc are a more informative
performance measure than the straight point-wise detection trace comparison on the right
columns of the same figures.

It is also noticeable that the ROC curves approach the upper-left corner of the unit square
[0, 1] × [0, 1] better for more regular trajectories. This is expected, as irregularity poses
more challenge for estimating the pdf of the response variable and affects all of its moments,
including the first moment as the prediction estimate as well as the second moment for the
variance estimate. The clinical tradeoff curves in terms of the miss detection rate versus
delivery efficiency share the same underlying information as those of the ROC and expresses
such indications explicitly.

The discrimination threshold η in the LRT determines the operating point on the ROC
curve and should be chosen based on the specific application. For example, if one wants to
detect a potentially large prediction error in order to decide whether to trigger beam pause, then
rejections of the null hypothesis lead to sacrifice of delivery efficiency, which is a significant
cost. Therefore, it may be preferable to operate near the lower-left corner of the ROC curve,
and select a relatively big η, to avoid too much beam pauses. On the other hand, if the detection
mechanism is merely used to decide whether to obtain more observations or to update models as
in Synchrony systems, then the cost of a ‘false positive’ is relatively small compared to a ‘false
negative’, and it would be desirable to operate at the upper-right corner of the ROC curve, with
a small η value. The aforementioned analysis is based on a single ROC, which corresponds to
detection with respect to a specific error tolerance ε. However, the detection scheme itself does
not rely on it, which gives rise to an alternative interpretation of the discrimination threshold
η: a large η corresponds to a relatively relaxed detection task of finding |ek| > ε for a large
ε; while a small η corresponds to a more strict detection of finding all |ek| > ε for a small
ε. With the LRT being a thresholding decision rule on σ̂y , it is obvious that the detected
large-prediction-error sets Cη = {k : point k claimed to have a large prediction error} form an
ordered sequence as η decreases according to the set inclusion relation.

In practice, one could start with a training segment, estimate the prediction variance σ̂y

and then incrementally ‘swipe’ σ̂y until the appropriate discrimination threshold value η is
found.

To summarize, this study presents the first rigorous study on prospectively detecting large
prediction errors in real time. The intermediate estimate of the prediction variance provides
confidence-interval type information on the prediction output. The hypothesis testing approach
for detection offers flexibility in choosing (1) the definition of the ‘large prediction error’ and
(2) the tradeoff between type I and type II detection errors. Development and derivations based
on the KDE method offers an efficient real-time implementation of the proposed approach. The
result of this study can be used to automatically trigger the adjustment of motion management
schemes, such as gating and tracking, in a prospective fashion.
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Appendix. Derivation of the second moment

Substituting the Gaussian mixture pdf into the definition of the second moment yields

σ̂ 2
y = E[(Yk − E(Yk|xk))

2|xk]

= 1

C̃

∫ ∑
i

(y − ŷk)
2wi exp

[−‖y − yi‖2
/

2σ 2
ker,y

]
dy

= 1

C̃

∑
i

wi

∫
(y − ŷk)

2 exp
[−‖y − yi‖2

/
2σ 2

ker,y

]
dy, (A.1)

with the normalization factor C̃ = √
2πσker,y

∑
i wi .

Note that each integral can be related to the variance of a Gaussian component in the
mixture pdf as follows. Let gi be the pdf for N

(
yi , σ

2
ker,y

)
,

gi(y) = 1

C
exp

[−‖y − yi‖2
/

2σ 2
ker,y

]
,

where C = √
2πσker,y .

Then each integral component in (5) can be rewritten as∫
(y − ŷk)

2 exp
[−‖y − yi‖2

/
2σ 2

ker,y

]
dy = C

∫
(y − ŷk)

2gi(y) dy

= C

∫
(y − yi + yi − ŷk)

2gi(y) dy

= C

∫
(y − yi )

2gi(y) dy + C

∫
(yi − ŷk)

2gi(y) dy

= C
{
σ 2

ker,y + (yi − ŷk)
2
}
. (A.2)

Let Ei denote the expectation with respect to the pdf gi. The cross term for integrating
(y − yi )(yi − ŷmean) is dropped from line 3 to line 4 because Ei[Y − yi] = 0. The
last line follows from the facts that the covariance of the ith Gaussian component is
Ei[(Y − yi )

2] = σ 2
ker,y and that the pdf gi integrates to unity in the second term.

Substituting (A.2) into (A.1), we obtain

σ̂ 2
y = 1∑

i wi

∑
i

wi

{
σ 2

ker,y + (yi − ŷk)
2
}

= σ 2
ker,y +

∑
i

wi∑
i wi

(yi − ŷk)
2. (A.3)
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