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Purpose: Dose volume histograms (DVHs) are common tools in radiation therapy treatment planning
to characterize plan quality. As statistical metrics, DVHs provide a compact summary of the under-
lying plan at the cost of losing spatial information: the same or similar dose-volume histograms can
arise from substantially different spatial dose maps. This is exactly the reason why physicians and
physicists scrutinize dose maps even after they satisfy all DVH endpoints numerically. However, up
to this point, little has been done to control spatial phenomena, such as the spatial distribution of hot
spots, which has significant clinical implications. To this end, the authors propose a novel objective
function that enables a more direct tradeoff between target coverage, organ-sparing, and planning tar-
get volume (PTV) homogeneity, and presents our findings from four prostate cases, a pancreas case,
and a head-and-neck case to illustrate the advantages and general applicability of our method.
Methods: In designing the energy minimization objective (Esparse

tot ), the authors utilized the following
robust cost functions: (1) an asymmetric linear well function to allow differential penalties for un-
derdose, relaxation of prescription dose, and overdose in the PTV; (2) a two-piece linear function to
heavily penalize high dose and mildly penalize low and intermediate dose in organs-at risk (OARs);
and (3) a total variation energy, i.e., the L1 norm applied to the first-order approximation of the dose
gradient in the PTV. By minimizing a weighted sum of these robust costs, general conformity to dose
prescription and dose-gradient prescription is achieved while encouraging prescription violations to
follow a Laplace distribution. In contrast, conventional quadratic objectives are associated with a
Gaussian distribution of violations, which is less forgiving to large violations of prescription than
the Laplace distribution. As a result, the proposed objective E

sparse
tot improves tradeoff between plan-

ning goals by “sacrificing” voxels that have already been violated to improve PTV coverage, PTV
homogeneity, and/or OAR-sparing. In doing so, overall plan quality is increased since these large
violations only arise if a net reduction in E

sparse
tot occurs as a result. For example, large violations to

dose prescription in the PTV in E
sparse
tot -optimized plans will naturally localize to voxels in and around

PTV-OAR overlaps where OAR-sparing may be increased without compromising target coverage.
The authors compared the results of our method and the corresponding clinical plans using analyses
of DVH plots, dose maps, and two quantitative metrics that quantify PTV homogeneity and overdose.
These metrics do not penalize underdose since E

sparse
tot -optimized plans were planned such that their

target coverage was similar or better than that of the clinical plans. Finally, plan deliverability was
assessed with the 2D modulation index.
Results: The proposed method was implemented using IBM’s CPLEX optimization package (ILOG
CPLEX, Sunnyvale, CA) and required 1–4 min to solve with a 12-core Intel i7 processor. In the testing
procedure, the authors optimized for several points on the Pareto surface of four 7-field 6MV prostate
cases that were optimized for different levels of PTV homogeneity and OAR-sparing. The generated
results were compared against each other and the clinical plan by analyzing their DVH plots and
dose maps. After developing intuition by planning the four prostate cases, which had relatively few
tradeoffs, the authors applied our method to a 7-field 6 MV pancreas case and a 9-field 6MV head-
and-neck case to test the potential impact of our method on more challenging cases. The authors
found that our formulation: (1) provided excellent flexibility for balancing OAR-sparing with PTV
homogeneity; and (2) permitted the dose planner more control over the evolution of the PTV’s spatial
dose distribution than conventional objective functions. In particular, E

sparse
tot -optimized plans for the

pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and
parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly
improving PTV homogeneity. Plan deliverability for E

sparse
tot -optimized plans was shown to be better

than their associated clinical plans, according to the two-dimensional modulation index.
Conclusions: These results suggest that our formulation may be used to improve dose-shaping and
OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our
objective function and constraints are linear and constitute a linear program, which converges to the
global minimum quickly, and can be easily implemented in treatment planning software. Thus, the
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authors expect fast translation of our method to the clinic where it may have a positive impact on
plan quality for challenging disease sites. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4808363]

I. INTRODUCTION

Dose-volume histogram (DVH) metrics provide a benchmark
to characterize and assess the dose delivered to organs-at-risk
(OARs). Widely used as a plan quality evaluation criterion,
DVH properties are often “prescribed” by the radiation oncol-
ogists to indicate the desired tumor coverage or normal-organ
sparing for the specific site under treatment, requiring that a
specified volume-fraction of a contoured structure is below or
above a specified dose.1 For example, 95% of the planning
target volume (PTV) in prostate cases must be at or above
the prescription dose.2 For organs-at-risk, DVH constraints
require that the fractional volume receiving a specific dose
is smaller than a given value to ensure proper normal tissue
recovery. Such constraints are designed to reflect the paral-
lel/serial property and radiobiological property of the OARs
within the region of interest.3 Parallel organs, such as the liver,
are able to tolerate damage better to a subvolume than serial
organs, such as the spinal cord.

Dose-volume constraints are intuitive to prescribe but diffi-
cult to implement and are analogous to the value-at-risk prob-
lem, which has been proved to be NP hard.4 Optimization
with respect to such criteria/constraints is computationally
costly, unscalable, and nonconvex. Therefore, dose-volume
constraints are often approximated with more practical dose-
based functionals to make optimization tractable and convex.5

In the clinic, it usually requires several iterations of in-
verse optimization by an experienced planner to satisfy DVH
constraints.6 A more fundamental limitation of the DVH, ar-
guably, arises from the statistical nature of the DVH itself.
DVHs are degenerate in the sense that plans with the same (or
similar) dose-volume histograms may exhibit markedly dif-
ferent spatial dose distributions.7 In fact, this insight is re-
flected in the oncologists’ practice of interactively reoptimiz-
ing to adjust the isodose contours, rather than DVH curves,
in the plan refinement process. This distinction is important,
because dose-planning physicians use both DVH and spatial
information to determine plan quality.2, 8, 9

Research into improving spatial dose distributions (dose-
shaping) has been mostly focused on voxel-based importance
weight assignment in the objective function.10–13 These voxel-
based methods enable the exploration of a larger Pareto sur-
face than the conventional structure-based approaches. How-
ever, a systematic method to utilize these high degrees of free-
dom remains largely elusive—the voxel-based importance
factors are often adjusted based on either subjective planner
experience10 or automated heuristic schemes.11–13 In addition,
these approaches aim at dose-profiling and do not directly tar-
get specific geometric properties of the dose distribution, such
as the spatial distribution of dose gradients and hot/cold spots.

These limitations are often addressed in the clinic with sev-
eral empirical strategies to control dose falloff and hot spots.
Most of these methods impose dose constraints on virtual

volumes, i.e., volumes with no physical basis that are cre-
ated for the sole purpose of improving planning results. These
techniques only differ in their approach to constructing the
virtual volumes and whether a priori information is needed to
improve plan quality. In one strategy,14 virtual critical struc-
tures are constructed in sensitive regions outside the target
where hot spots occurred in an initial optimization step, al-
lowing dose planners to directly reduce the size and mag-
nitude of hot spots. However, this method requires the dose
planner to assign a maximum dose constraint to each virtual
volume, a step that further complicates the iterative process of
dose-planning and possibly reduces the sparing of other crit-
ical structures. Another strategy, target volume expansion,15

applies dose constraints to serial expansions of the PTV in an
effort to control dose falloff and has similar drawbacks.

In this study, we propose to address these limitations by
formulating a novel objective function using robust cost func-
tions that encourage a sparse set of violations that implicitly
shape the spatial distribution of dose values and dose gradi-
ents, and provide a flexible method for their control. Further-
more, we will provide a proof of principle for our method us-
ing four IMRT prostate cases, one IMRT pancreas case, and
one IMRT head-and-neck case. We will accomplish proof of
principle by: (1) describing the mathematical motivation and
logic behind our method; (2) providing qualitative and quan-
titative comparisons of dose-shaping performance with the
clinical plans; and (3) discussing potential applications and
future work.

II. MATERIALS AND METHODS

II.A. Ideal dose-shaping properties: Motivation for
objective function development

In general, a good treatment plan delivers: (1) homoge-
neous dose to the PTV; and (2) sharp dose falloff away from
the homogeneous region at the boundary of the PTV. When
the PTV and OARs overlap or are relatively adjacent, full
PTV coverage with the prescription dose cannot be achieved
without sacrificing OAR protection, necessitating a proper al-
location of dose gradients. Furthermore, the underlying phys-
iological, physical, and mechanical characteristics of the hu-
man anatomy, x-ray beam energy deposition, and treatment
machine capability may further limit the achievable spatial
dose distribution.9, 16 The rigidity of these tradeoffs varies
from site-to-site and patient-to-patient, and depends on fac-
tors such as: patient size, PTV-OAR overlap, and PTV-shape
concavity.8, 17, 18 For example, OARs with substantial PTV-
overlap cannot be spared as well as OARs with small over-
lap, and horseshoe PTVs are harder to treat without compro-
mising OARs than spherically or cylindrically shaped PTVs.
However, despite the different challenges presented by differ-
ent disease sites and individual plans, the fundamental goals
and tradeoffs remain the same.
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II.A.1. Fundamental optimization goals

The goals of treatment planning may be condensed into
two qualitative objectives that are common to inverse opti-
mization in radiotherapy: (1) conformity to the prescription
dose in the vast majority of voxels, i.e., general conformity,
for all regions; and (2) gradient control in the PTV(s) to help
control the spatial dose distribution of the PTV(s), including
hot spots.

General conformity to the prescription dose in each region
is mainly dictated by overlap8 and the geometric proximity
of PTV and OAR surfaces. This geometric proximity, or rel-
ative adjacency, occurs when PTV and OAR surface voxels
are separated by at most a few centimeters and are coupled
by the dose deposition matrix (see the Appendix). In prostate
cases, the PTV almost always overlaps with the bladder and
rectum. In the pancreas case, several organs overlapped or ad-
joined the PTV, including the small bowel, kidneys, stomach,
liver, and spinal cord. The head-and-neck case exhibited sim-
ilar behavior, with the parotid glands, mandible, spinal cord,
and brain stem overlapping or adjoining at least one of three
PTVs. In these cases, it is much harder to deliver the prescrip-
tion dose to the target(s) while sparing the OARs than in cases
where the target(s) and OARs are separated by large distances.

Conventional radiotherapy optimization typically uses
quadratic cost functions to penalize deviations from prescrip-
tion in the PTV and OARs. As a result, maximum dose falloff
is not achieved, except when PTVs and OARs are far apart,
because quadratic penalties do not allow large deviations from
prescription with respect to each of these structures. By con-
trast, robust penalty functions enable sharp dose drop-off to
OARs by permitting a small number of relatively large de-
viations, i.e., outliers, to arise near the PTV’s surface. The
resulting solutions are said to have sparse violation with re-
spect to prescription since most voxels conform to the pre-
scription dose while a small fraction may deviate markedly
from prescription. While there is a possibility that outliers
may group together to form cold spots in PTV-OAR overlaps
and/or OAR-adjacent regions on the PTV’s surface, we do not
anticipate any risk to achieving tumor control. The compet-
ing PTV and OAR costs will decrease the likelihood of such
cold spots forming in the CTV by localizing them close to the
PTV’s periphery in overlap or relatively adjacent regions.

To increase PTV spatial homogeneity while largely main-
taining OAR-sparing, we propose a novel application of the
total variation energy that penalizes the spatial dose gradient
in the PTV with a robust cost function. In doing so, we en-
courage the development of two classes of voxels in the PTV:
(1) zero-gradient voxels that arise mainly in the PTV’s inte-
rior and improve homogeneity; and (2) nonzero gradient vox-
els that arise mainly on the prescription-dose isocontour and
encourage dose-falloff to the OARs.

II.A.2. Choice of robust cost function

In regression, a robust cost function is a cost function that
is not unduly affected by a small set of extreme values, i.e.,
outliers, which deviate from normality.19 For optimization,

the robust cost function is chosen to balance the tradeoff be-
tween: (1) desirable outlier-sparing behavior and (2) algorith-
mic stability and efficiency. In our preliminary implementa-
tion, we chose to use the L1 norm, because: (1) it is associated
with a Laplace distribution of violations, which is more robust
to outliers than the Gaussian distribution;20 and (2) its con-
vexity (though not strict) and linear form enables fast linear
program (LP) solvers. Furthermore, L1-based solutions would
serve as an appropriate initial guess for iterative solutions
of L0-based objective functions21–23 should they be deemed
preferable in the future.

II.B. Development of objective function

In this subsection, we will prescribe appropriate robust
cost functions to mathematically describe the behavior out-
lined in Sec. II.A. We begin by presenting a generic formal-
ism for an objective function Etot, as the sum of a data fidelity
term and a regularization energy,

Etot = Ef + Er. (1)

The data fidelity term Ef characterizes the discrepancy be-
tween the achieved distribution and prescription—decreasing
this energy encourages general conformity to objective pre-
scriptions. The regularization term Er is used to impose
a priori knowledge about solution behavior on the optimiza-
tion process. In this study, the data fidelity term was used to
penalize deviations from the prescription doses of the PTV(s)
and OAR(s) to achieve desired target coverage and OAR-
sparing, and the regularization term was used to penalize de-
viations of the spatial dose gradient in the PTV from zero to
improve dose homogeneity in the PTV. Equations (2a)–(2d)
reflect these objectives,

E
sparse
tot =

Ef︷ ︸︸ ︷∑
j∈PTV

EPTVj︸ ︷︷ ︸
EPTV

+
∑

m∈OAR

EOARm︸ ︷︷ ︸
EOAR

+
Er︷ ︸︸ ︷∑

j∈PTV

ETVRj︸ ︷︷ ︸
ETVR

, (2a)

EPTVj
= 1

NPTVj

NPTVj∑
i=1

max

⎛
⎝αl(DL − di),

0,

αh(di − DH )

⎞
⎠, (2b)

EOARm
= 1

NOARm

NOARm∑
i=1

max

(
βl(di),

βh(di − Dx)

)
, (2c)

ETVRj
= γ

NPTVj

∥∥∇dPTVj

∥∥
1
. (2d)

The first two terms on the right-hand side of Eq. (2a)
are fidelity terms and encourage conformity with PTV and
OAR dose prescriptions, respectively. The third term is the
total variation energy ETVR, a regularization term that en-
courages PTV homogeneity. Together, these terms produce
a novel formulation that improves tradeoff between DVH fi-
delity and PTV homogeneity by permitting large penalty vi-
olations, i.e., outliers, to develop in regions where compet-
ing planning goals may be maximally benefitted. In doing so,
overall plan quality is improved.
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FIG. 1. Penalty descriptions: (a) PTV voxels are penalized by a linear well function that is made more severe by increasing weights αl and αh and more
discriminating by decreasing DH–DL; (b) OAR voxels are penalized heavily above the elbow DOAR with weight βh, shown as a darkly colored circle, and lightly
below it with weight β l; and (c) spatial dose deviations in the PTV are penalized by the L1 norm with weight γ . Dx is the offset needed for the high-dose leg and
low-dose leg to intersect at the EOAR elbow.

Comprehensive descriptions of EPTV, EOAR, and ETVR for
radiotherapy were gathered into Fig. 1 to visually illustrate
Eq. (2a). The term EPTV is a linear well function with two
nonzero “legs” that bookend a central region that is not penal-
ized, providing differential penalties for underdose, relaxation
of prescription dose, and overdose, respectively. The mathe-
matical form of EPTV has several parameters that describe:
(1) the slopes, αl and αh, of the low-dose and high-dose
legs; and (2) the “underdose” prescription, DL, and the “over-
dose” prescription, “DH.” Increasing the value of αl and αh in-
creases the penalty on those voxels that deviate below DL and
above DH, respectively, thereby reducing deviation from pre-
scription. Decreasing the range of relaxation, i.e., DH − DL,
makes EPTV more discriminating, and drives the PTV dose
distribution closer to uniform while leaving less flexibility for
OAR-sparing. Increasing ETVR weight γ also increases PTV
homogeneity.

EOAR is a linear piecewise function with two legs: (1) a
low-dose leg that lightly penalizes doses less than DOAR; and
(2) a high-dose leg that heavily penalizes doses above DOAR.
The offset value Dx is defined such that the high-dose leg and
low-dose leg of EOAR intersect at DOAR. Increasing the slope
βh increases the penalty on those voxels with dose above
DOAR, the point beyond which doses are considered toxic or
otherwise undesirable. The slope β l is made small to pro-
vide a mild driving force towards prescription for low-dose
or unimportant areas. This piecewise behavior allows more
beams to pass through less sensitive OAR regions to improve
dose-shaping around PTV surfaces and reduce overall risk of
organ complication. Here, the goal is not to approximate EOAR

or EPTV, as an L2 norm as in Ref. 24, but rather to improve
tradeoff between the OARs and PTVs.

EPTV, EOAR, and ETVR exhibit L1-type behavior, or
generalized-L1 behavior, because their functional forms may
be recast as L1 norms with linear constraints. Therefore, they

retain the robust error-handling of L1 norms and are naturally
suited to balance PTV homogeneity with OAR-sparing using
large deviations, or outliers, from dose and gradient prescrip-
tions of the PTV and OARs.

II.B.1. Outlier allocation

Figure 2 depicts a simplified but illustrative scenario of
tradeoff between a PTV, shown as a large circle, and an OAR,
shown as a small ellipse, and demonstrates how minimizing
the proposed cost function would allocates outliers, corre-
sponding to cold and hot spot of potential concerns. If low-
dose outliers, i.e., large deviations below DL, were to arise
outside of the overlap region, e.g., in the star in Fig. 2, then
they would incur an increase in cost to EPTV and ETVR. How-
ever, if low-dose outliers were to arise inside the overlap re-
gion, e.g., in the triangle in Fig. 2(a), then they would incur
the same increase to EPTV and ETVR but reduce EOAR. Thus,
it is more favorable in terms of E

sparse
tot cost for low-dose out-

liers to arise in overlap regions where they will improve OAR-
sparing, rather than in nonoverlapping regions where no ben-
efit is achieved. Similarly, high-dose outliers localize away
from PTV-OAR overlaps and regions of relative adjacency
to help spare OARs of high dose, as illustrated in Fig. 2(c),
where high-dose outliers are shown to incur an additional
cost to EOAR if they arise in the overlap region. The majority
of gradient outliers will arise with low-dose outliers in PTV-
OAR overlap regions and with high-dose outliers in insensi-
tive regions to minimize E

sparse
tot via increased OAR-sparing.

The interplay of energy terms in Fig. 2 generalizes to
cases of multiple PTVs and OARs with two caveats: (1) low-
dose outliers localize predominantly to PTV-OAR overlaps of
more important OARs, i.e., those OARs given higher priority
weights by the dose planner; and (2) high-dose outliers still
primarily localize away from PTV-OAR overlaps, but will
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FIG. 2. Illustration of outlier localization: (a) geometry of simple, instructive scenario, (b) low-dose outlier localization, and (c) high-dose outlier localization.
The charts in (b) and (c) depict how low- and high-dose outliers, respectively, will increase or decrease the cost functions of our formulation. A “+” indicates
an increase in cost, a “0” indicates no change in cost, and a “−” indicates a decrease in cost. The outliers will arise in locations that minimize overall cost.
Therefore, low-dose outliers arise in the overlap region and high-dose outliers arise outside of the overlap region.

arise in PTV-OAR overlaps of less important OARs should
that net a reduction in E

sparse
tot . The majority of gradient outliers

will still arise where low- and high-dose outliers do to mini-
mize E

sparse
tot . For example, in prostate cases low-dose outliers

will localize first to the rectum and second to the bladder and
high-dose outliers will localize first to nonoverlapping regions
in the PTV and second to the bladder, because the rectum is
given higher priority than the bladder. Similarly, gradient out-
liers will localize with low-dose outliers first to the rectum
and second to the bladder and with high-dose outliers first to
nonoverlapping regions in the PTV and second to the bladder.

II.B.2. Balancing PTV homogeneity and OAR-sparing

The dose planner must decide how relatively important
PTV homogeneity and OAR-sparing are for a particular plan.
As discussed in Sec. II.B.1, OAR-sparing is dependent upon
the low-dose outliers that arise in overlap and adjacent re-
gions. In fact, maximal OAR-sparing is achieved by penal-
izing ETVR lightly and penalizing the high-dose leg of EPTV

lightly or negligibly, so that large low-dose and gradient out-
liers may develop in overlap regions. Unfortunately, a plan
with maximal OAR-sparing may also exhibit substantial PTV
heterogeneity with large and prominent hot spots since large
high-dose and gradient outliers are also allowed to develop
when ETVR is penalized lightly and the high-dose leg of EPTV

is largely ignored. As a result, such a plan would not be ac-
ceptable for treatment. Moderately increasing the magnitude
of ETVR would decrease the magnitude of hot and cold spots to
some extent while largely maintaining the spatial distribution
of the maximal-sparing plan. Moderately increasing the mag-
nitude of the high-dose leg of EPTV would alter the spatial dis-
tribution of hot and cold spots—and thus OAR-sparing—and
have a more pronounced effect on reducing their magnitude
than achieved by ETVR. Heavily penalizing either cost func-
tion would yield a homogeneous PTV with reduced OAR-
sparing. By tuning the relative importances of ETVR and the

high-dose leg of EPTV, dose planners can achieve their desired
balance between PTV homogeneity and OAR-sparing.

II.B.3. Comparison with previous LP techniques

Most previous LP methods were developed to decrease op-
timization time. In some cases, e.g., in the case of Romeijn
et al.,24, 25 convex cost functions were approximated as piece-
wise linear functions with the intent of decreasing optimiza-
tion time. In other cases, the aim was to make the problem
convex, and thus solvable, for a specific application, such as
adaptive planning26 or Pareto navigation.27 In contrast, our
method was designed to address the underlying tradeoffs in
radiotherapy planning, and this led to the development of our
novel generalized L1 formulation with total variation regular-
ization. Each parameter of our objective function has physical
implications, unlike the fitted values obtained by approximat-
ing convex functions with piecewise linear penalties, and may
be adjusted in a straightforward manner to balance PTV ho-
mogeneity and OAR-sparing.

II.B.4. Optimization details

The sparse objective function E
sparse
tot is a linear program

and was solved using a primal-dual interior-point algorithm28

with CPLEX, which was chosen for its robustness in solving
large-scale, real-world problems.

II.C. Quantitative metrics

We introduce two quantitative metrics to be used in evalu-
ating PTV dose distributions: (1) one-sided standard deviation
(σ+) and (2) one-sided root-mean-squared error (RMSE+).
These metrics describe homogeneity (σ+) and overdose
(RMSE+), and are defined using the mean dose of voxels
above the prescription dose, d̄+, and the prescription dose,
Dp, respectively, as shown in Eqs. (3) and (4) below. Devia-
tions below Dp are not penalized, because voxels below Dp
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are likely needed to spare OARs. These metrics do not ne-
glect target underdose since our plans were normalized to
achieve: (1) the 95% clinical target coverage criterion for the
prostate and pancreas cases; and (2) similar or better target
coverage than the clinically optimized plans for each PTV
in the head-and-neck case. Thus, our plans were on equal
footing with the clinical plans in terms of target coverage
so any gains in OAR-sparing by our plans could be clearly
judged,

σ+ =
√√√√ 1

|N+|
∑
n∈N+

(dn − d̄+)2, (3)

RMSE+ =
√√√√ 1

|N+|
∑
n∈N+

(dn − Dp)2, (4)

where N+ is the set of voxels above Dp.
Quantification of OAR dose distributions for all cases was

performed through DVH plots.

II.D. Clinical plan details

The prostate cases did not include seminal vesicles and
were optimized with seven 6-MV beams located at 0◦, 40◦,
80◦, 120◦, 240◦, 280◦, and 320◦. The pancreas case was op-
timized with seven 6-MV beams located at 0◦, 50◦, 100◦,
150◦, 210◦, 260◦, and 310◦. The head-and-neck case in-
cluded simultaneous integrated boost (SIB) and was opti-
mized with nine equi-spaced 6-MV beams starting at 0◦.
The clinical planning objectives for each site are shown
in Table I above and a fine-resolution fluence grid (2.5
× 2.5 mm) was used to optimize each case. The prescrip-
tion doses were as follows: (1) 72 Gy for the prostate cases;
(2) 45 Gy for the pancreas case; and (3) 69.3, 62.7,
and 56.1 Gy for PTV1, PTV2, and PTV3, respectively, for
the head-and-neck case. PTVs were contoured by a dose-
planning physician.

II.E. Clinical plan conversion to CERR framework

All clinical plans were optimized using Varian’s Eclipse
treatment planning system by an experienced dose plan-
ner, and clinical dose maps were calculated using the AAA
algorithm.29 We utilized CERR’s QIB algorithm30 for dose
calculation, because it was not possible to obtain the perti-
nent dose deposition matrices from Eclipse. As such, algo-
rithmic dissimilarity between Eclipse AAA and CERR QIB
was a potential issue. Specifically, AAA and QIB, which are
both based on the convolution superposition principle, differ
in how they address heterogeneity: QIB assumes an infinite
medium of water while AAA accounts for heterogeneity us-
ing the planning CT image. As such, for tumor sites with rel-
atively low tissue heterogeneity, this algorithmic distinction
does not necessarily translate to appreciable dose-calculation
differences between AAA and QIB. However, it was still pru-
dent to convert the Eclipse plans into the CERR framework to
mitigate any potential dose-calculation bias.

To make this conversion, we used a three-step process.
First, we imported the Eclipse beam angles and planning CT
into CERR and calculated ACERR, the global dose deposition
matrix of CERR, using CERR QIB. Second, we imported
the 3D clinical dose distribution dEclipse into CERR. Third,
to match dclin as closely as possible in CERR, we minimized
the sum-of-squares error between: (1) dEclipse and (2) the
matrix-vector product of ACERR and xEclipse→CERR, the optimal
fluence map for dclin in the CERR framework. Sufficient dose-
matching was achieved in all cases, as evidenced by the body-
wide root mean squared errors for the prostate cases (average
1.12 Gy), pancreas case (1.38 Gy), and head-and-neck case
(1.41 Gy). Furthermore, good agreement between Eclipse and
Eclipse→CERR fluence maps and DVHS was also observed,
as characterized by the pancreas case in Fig. 3. The Eclipse
plan was down-sampled for this comparison—and for the
conversion from Eclipse→CERR—because its fluence reso-
lution (2.5 × 2.5 mm) was much higher than what was used
in CERR (1.0 × 1.0 cm).

TABLE I. Clinical planning objectives for the prostate, pancreas, and head-and-neck cases. Abbreviations: Fem. heads (femoral heads), N. liver (normal liver),
S. bowel (small bowel), and Dp (prescription dose).

Prostate Pancreas Head and Neck

Organ Goal Organ Goal Organ Goal

PTV VDp >= 95% PTV VDp >= 95% PTV D0.1cc <= 1.1*Dp

Rectum V50 <= 50% N. liver V15 <= 900 cc PTV1 VDp >= 95%
V60 <= 35% Dmean <= 15 Gy PTV2 VDp >= 95%
V65 <= 25% Kidneys V10 <= 10 cc PTV3 VDp >= 95%
V70 <= 20% Dmean <= 10 Gy Cochlea Dmean <= 45 Gy
V75 <= 15% S. bowel V20 <= 10 cc Cord Dmax <= 50 Gy

Bladder V65 <= 50% V30 <= 9 cc Chiasm Dmax <= 55 Gy
V70 <= 35% Stomach V20 <= 15 cc Brain stem Dmax <= 54 Gy
V75 <= 25% Cord Dmax <= 50 Gy Mandible Dmax <= 70 Gy
V80 <= 15% Parotids Dmean <= 20 Gy

Fem. heads V50 <= 10%
Penile bulb Dmean <= 50.0 Gy
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FIG. 3. Comparison between the Eclipse plan and the Eclipse → CERR plan for the pancreas case. (a) Down-sampled Eclipse beams. (b) Eclipse → CERR
beams. (c) DVH comparison between Eclipse (solid lines) and Eclipse → CERR (dashed lines). The beams in (a) and (b) share a common color scheme.

II.F. Patient data

The proposed method was tested on four prostate cases,
one pancreas case, and head-and-neck case. The retrospective
use of de-identified patient data was approved by our institu-
tional review board (IRB).

II.G. Plan deliverability assessment:
2D modulation index

The 1D modulation index (MI) was formulated by Webb
as a proof-of-principle study to quantify beam modulation
complexity, arguing that differences in influence between
neighboring beamlets greater than the beam’s standard devi-
ation were more indicative of complexity/deliverability than
the standard deviation itself.31 Thus, MI is similar to the
total variation in that it penalizes the total magnitude of
intrabeamlet deviations, and is sensitive to both (1) high-
frequency deviations, i.e., intrabeamlet deviations within rel-
atively homogeneous regions, and (2) low-frequency devi-
ations, i.e., coarse-scale deviations from piecewise-constant
behavior. Later, the method was generalized to 2D (MI2D) to
quantify beam complexity of patient cases,32 and was shown
to correlate better with treatment deliverability than monitor

units.33 As such, ratios of MI2D for E
sparse
tot -optimized plans to

MI2D for Eclipse→CERR plans and ratios of MI2D for E
sparse
tot -

optimized plans to MI2D for clinical (Eclipse) plans were used
in this work to compare the relative deliverability and effi-
ciency of E

sparse
tot -optimized plans.

II.H. Planning process

The planning process of our method is relatively simple, as
shown in the written steps below and Fig. 4.

1. Following contour exportation, DICOM-RT objects
containing structure contours, CT scan, and the clin-
ical dose map, are imported into CERR.

2. CERR’s IMRTP function is then used to calculate
the dose-deposition matrices for each structure with
QIB.30

3. An initial set of weighting factors is chosen and an
initial optimization is run.

4. Weighting factors are iteratively modulated by the
planner until the plan sufficiently achieves planning
goals.

5. The global dose map is calculated with the QIB
algorithm.

6. The plan’s MI2D is calculated.

FIG. 4. Flowchart of our method’s planning process.
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II.I. Effect of fluence resolution on the optimization
process

We defined our optimization problem in CERR using a
coarse-grid fluence map (1.0 × 1.0 cm) for the purpose of im-
proving planning efficiency, whereas a fine-grid fluence map
(2.5 × 2.5 mm) was used in Eclipse. This difference in reso-
lution represented a sixteen-fold decrease in the number of
beamlets (degrees of freedom) available to our method for
optimization, which physically limits dose-shaping ability.34

Had the coarse fluence grid prevented our method from im-
proving upon the clinical plans we would have refined its res-
olution as necessary. However, the improvements made by our
method were substantial in their own right, and were made
that much more pronounced with this limitation in mind.

II.J. Outline of investigations

We performed three main investigations for this work.
First, several E

sparse
tot -optimized plans of each prostate case

were compared against the Eclipse→CERR plan of the same
case using DVH plots, characteristic image views, and the
quantitative metrics introduced earlier in Subsection II.C.
The purpose of these comparisons was to give us a better
understanding of: (1) the practical differences between con-
ventional and E

sparse
tot -based optimization; and (2) the spatial

dose-shaping ability of E
sparse
tot . For the sake of brevity and

presentation quality, the results of only one prostate case are
presented in this manuscript, because the behavioral differ-
ences between E

sparse
tot -optimized plans and Eclipse→CERR

plans changed negligibly from case-to-case.
Second, these comparisons were repeated for a pancreas

case and a head-and-neck case to gauge the potential im-
pact of our method on more challenging geometries. Third,
two comparisons of plan deliverability were performed us-
ing MI2D ratios. The first comparison was between fluence
maps generated using our method and fluence maps gener-
ated from the Eclipse→CERR conversion to ensure a com-
mon optimization framework for deliverability comparison.
The second comparison was between the fluence maps gener-
ated using our method and the clinical fluence maps generated

TABLE II. Summaries of E
sparse
tot -optimized plans with salient weighting fac-

tors for EPTV and ETVR.

Plan EPTV αh ETVR γ

HC ∞ (constraint) 0
TV1 0 3.5
TV2 0 7
TV1c 5 3.5
TV2c 5 7

with Eclipse to demonstrate the effect of fluence resolution on
deliverability.

III. RESULTS

III.A. Prostate case

Each of the plans optimized with E
sparse
tot for the prostate

case was done according to the following, descending-order
goals: (1) E

sparse
tot -optimized plans VDp ≥ Eclipse→CERR

VDp, (2) rectum-sparing, and (3) PTV homogeneity and
bladder-sparing. For the first plan, termed plan HC, we im-
posed a hard constraint on the PTV’s dose distribution using
the maximum dose found in the Eclipse→CERR plan as the
upper limit and did not apply ETVR regularization. This con-
straint is equivalent to letting αh of the high-dose leg in EPTV

approach ∞, as shown in Table II. For the second plan, termed
TV1, the high-dose leg was removed, i.e., αh = 0, and an ETVR

with relatively low importance was assigned to the PTV. The
third plan, TV2, placed a higher importance on TV regular-
ization than TV1, the magnitude of which was controlled by
weight γ , as shown in Table II. The third and fourth plans,
TV1c and TV2c, were formed by adding high-dose legs with
moderate importance, i.e., αh = 5, to TV1 and TV2, respec-
tively. Therefore, TV1c and TV2c deterred high-dose regions,
or hot spots, with two penalties—ETVR and the high-dose leg
of EPTV—rather than just one, i.e., ETVR, as TV1 and TV2 did.
These formulations are summarized in Table II and the DVH
results are shown in Fig. 5.

FIG. 5. (a)–(c) DVH plots for characteristic prostate case. Pictured are the clinical plan (C) and the five E
sparse
tot -optimized plans defined in Table II for the PTV,

bladder, and rectum. Arrows and dotted circles indicate points of discussion in the text.
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III.A.1. Controlling spatial dose distributions

The five plans described in Table II were designed to il-
lustrate how nonspatial and spatial penalties can be used to
influence E

sparse
tot -based optimization. To begin, we consider

plan HC, which prevented all voxels from exceeding the max-
imum dose of the Eclipse→CERR plan. As a result, the high-
dose regions that developed in plan HC were: (1) relatively
low in magnitude; and (2) not very sensitive to plan geom-
etry, as shown by black arrows in Figs. 6(b) and 7(d) where
they developed in the PTV-bladder overlap. In contrast, plan
TV1, which lightly penalized spatial gradients but did not pe-
nalize overdose, encouraged a hot-spot distribution that was
more sensitive to geometry but less sensitive to high-dose vio-
lations, as shown by lightly colored arrows in Figs. 6(c), 7(e),
and 7(f). The hot spots that did develop were in nonsensitive
locations but were also quite prominent, while dose falloff
from the PTV’s surface to the rectum was steeper than seen
in all other plans, as shown by the lightly colored arrow in
Fig. 5(c) and the dotted black arrows in Fig. 7, respectively.
In this way, PTV homogeneity was sacrificed to maximize
rectum-sparing in plan TV1.

By contrast, plan TV2 placed substantially more impor-
tance on PTV homogeneity by heavily penalizing ETVR,
which homogenized the PTV’s spatial dose distribution
through an anisotropic smoothing mechanism, as shown by
comparing regions indicated by solid and dotted lightly col-
ored arrows in Figs. 7(e) and 7(g) and Figs. 7(f) and 7(h),
respectively. The smoothing effect also reduced OAR-sparing
by penalizing dose deviations, and therefore dose falloff, from
the PTV’s surface. As a result, rectum-sparing was slightly
worse for plan TV2 relative to plan TV1, as shown by the
lightly colored arrow in Fig. 5(c), while PTV homogeneity
was substantially increased, as shown in Fig. 5(a). Black ar-
rows in Fig. 5(b) show that bladder-sparing for plan TV2 was:
(1) slightly improved for high doses due to improved PTV
homogenization in the large PTV-bladder overlap; and (2)
slightly decreased for lower doses due to the aforementioned
smoothing mechanism’s effect on dose falloff.

Plan TV1c offered a more balanced approach where PTV
inhomogeneity and high-dose regions were both moderately
penalized. In fact, by comparing plan TV1c with plan TV1

and TV2, intuition regarding the practical effects of ETVR and
the high-dose leg of EPTV can be gained. Examination of the

FIG. 6. Transaxial slice near the pubic symphasis. Pictured are the clinical plan (C) and the five sparse plans from Table II. Arrows refer to discussion points in
the text. Isodose lines, expressed as a percentage of PTV prescription dose, are shown above in the legend.
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FIG. 7. Transaxial slice near seminal vesicles and selected sagittal slice near sagittal midline of PTV. Pictured are the clinical plan (C) and the five sparse plans
from Table II. Arrows refer to discussions in the text. Isodose lines, expressed as a percentage of PTV prescription dose, are shown above in the legend.

110% isodose and 105% isodose regions indicated by solid
and dotted lightly colored arrows, respectively, in Figs. 7(f)
and 7(j), shows that ETVR homogenized all spatial dose vari-
ation, regardless of dose value, because both of these regions
were reduced in size and magnitude. In contrast, the high-
dose leg of EPTV only reduced dose delivered to voxels above
a certain threshold, because the 110% isodose region was
markedly reduced while the 105% region was not. Thus, the
high-dose leg of EPTV may be used to target prominent hot
spots, like the 110% isodose regions seen in plan TV1, while
ETVR may be used to improve overall PTV homogeneity and
encourage steeper dose falloff using geometry-sensitive out-
lier allocation. The resulting net effects for this prostate case,
as shown in Figs. 5(a), 5(c), and 7(e)–7(h), and 6(i) and 6(j),
were that plan TV1c was closer to plan TV2 than plan TV1 in
terms of PTV homogeneity σ+ and PTV overdose RMSE+,
as shown in Fig. 5, but closer to plan TV1 in terms of rectum-
sparing, as shown in Fig. 5(c). Plan TV2c was nearly iden-
tical to plan TV2 because the heavily penalized ETVR was

the main driver of dose falloff and PTV homogeneity in both
plans.

III.B. Complicated geometries: The pancreas
and head and neck

The prostate case of Sec. III.A was used as the basis for il-
lustrating our method, because prostate plan geometries are
relatively simple and can help gain a basic intuition about
treatment planning behavior and the interaction of different
energies, e.g., EPTV and ETVR, in a relatively straightforward
process. Upon establishing insight from the prostate cases, we
further tested the generality of the proposed method on com-
plex pancreas and head-and-neck cases where more transla-
tional significance was expected.

III.B.1. Pancreas case

For the selected pancreas case, we primarily sought
to improve PTV homogeneity and cord-sparing while
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FIG. 8. DVH results for the pancreas case: (a) PTV, (b) spinal cord, (c) small bowel, (d) stomach, (e) kidneys, and (f) liver. Clinical plan plots have solid lines
and our plan has dashed lines.

maintaining the DVHs of other organs. To this end, we applied
a large weighting factor to ETVR, γ = 9.5, and set the Ecord el-
bow to 10 Gy, significantly below the maximum seen in the
Eclipse→CERR plan. We did not penalize high-dose devia-
tions in the PTV, i.e., αh of the high-dose leg was set to zero.
DVH results from the plan optimized using our generalized-
L1 method and the Eclipse→CERR plan are shown in
Fig. 8.

The DVH results indicated substantial improvements to
both PTV homogeneity and cord-sparing while maintaining
the dose-sparing of other organs. The maximum dose deliv-
ered to the PTV in our plan was approximately 2 Gy less
than that delivered in the Eclipse→CERR plan, and gains in
PTV homogeneity, σ+ = 0.79 vs 1.18 Gy, and PTV overdose,
RMSE+ = 1.97 vs 2.38 Gy, were clearly reflected in the DVH
plot in Fig. 8(a). Furthermore, the maximum dose delivered to
the cord in our plan was over 15 Gy less than that delivered to
the Eclipse→CERR plan, as shown in Fig. 8(b).

The gains in overall plan quality made by our plan over the
Eclipse→CERR plan become more pronounced when com-
paring transaxial, sagittal, and coronal views of each in Fig. 9.
First, the spatial dose distribution of our plan is more uniform
and devoid of the large hot spots seen in the Eclipse→CERR
plan, as indicated by the black arrows in Figs. 9(b), 9(c), 9(e),
and 9(f). Second, the large improvement in cord-sparing in
our plan is also clearly seen, as is a larger low-dose region

around the cord, which is labeled in Figs. 9(a) and 9(d). Third,
our plan is more pleasing visually and generally has better
conformity of high doses to the PTV surface where OARs are
relatively adjacent, as shown by comparing regions indicated
by the dotted ellipses in Figs. 9(b) and 9(e) and Figs. 9(c) and
9(f).

III.B.2. Head-and-neck case

Our goals for the head-and-neck case were to improve PTV
homogeneity and sparing of the parotid glands, which have a
major impact on quality of life. We applied large weighting
factors to both EOAR, for the parotid glands, and ETVR, and set
the EOAR elbow of the parotid glands to 10 Gy. We used het-
erogeneous weights for ETVR and the high-dose leg of EPTV:
(1) γ = 15 and αh = 13.5 for PTV1, (2) γ = 4 and αh = 25.5
for PTV2, and (3) γ = 3 and αh = 20.2 for PTV3. DVH re-
sults from this plan and the Eclipse→CERR plan are shown
in Fig. 10.

The DVH results in Fig. 10 clearly indicate that substan-
tial improvements to both PTV homogeneity and parotid- and
cord-sparing were made while maintaining or improving the
dose-sparing of other organs. The maximum dose delivered to
PTV1, PTV2, and PTV3 in our plan was less than that deliv-
ered to the Eclipse → CERR plan by 2.35, 2.35, and 3.52 Gy,
respectively. The quantitative PTV dose metrics followed a
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FIG. 9. Selected transaxial, sagittal, and coronal views of the pancreas case. Our plan is shown in the top row and the clinical plan is shown in the bottom row.
Arrows and dotted ellipses indicate comparisons made in the text. Isodose lines, expressed as a percentage of PTV prescription dose, are shown above in the
legend.

FIG. 10. DVH results for the head-and-neck case: (a) PTV, (b) parotid glands, (c) spinal cord and brain stem, (d) cochlea, (e) tongue, and (f) mandible.
Eclipse→CERR plan plots have solid lines and our plan has dashed lines.
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FIG. 11. Selected transaxial, sagittal, and coronal views of the head-and-neck case. Our plan is shown in the top row and the Eclipse→CERR plan is shown
in the bottom row. Arrows and textual labels indicate comparisons made in the text. Isodose lines, as a percentage of the PTV1 prescription dose, are specified
above. The 81% line corresponds to the prescription dose of PTV3 and the 90% line corresponds to the prescription dose of PTV2. The PTV1 contour is darkly
colored, the PTV2 contour is lightly colored, and the PTV3 contour is black.

similar trend: (1) PTV homogeneity, σ+ = 1.18 vs 1.77 Gy,
and PTV overdose, RMSE+ = 2.86 vs 3.87 Gy, for PTV1;
(2) PTV homogeneity, σ+ = 2.27 vs 3.30 Gy, and PTV over-
dose, RMSE+ = 7.91 vs 8.13 Gy, for PTV2; and (3) PTV
homogeneity, σ+ = 3.85 vs 3.78 Gy, and PTV overdose,
RMSE+ = 7.32 vs 6.59, for PTV3. Most importantly, our
method could have markedly improved the patient’s salivary
function, a major quality of life issue, by substantially reduc-
ing the mean dose delivered to the left parotid gland (15.55 vs
25.67 Gy) and right parotid gland (16.93 vs 28.73 Gy).35, 36

Large improvements in cochlea-sparing were also evident, as
shown in Fig. 10(d) while tongue- and mandible-sparing were
maintained.

As with the pancreas case, gains in overall plan quality can
be more appreciated when comparing transaxial, sagittal, and
coronal views of the Eclipse→CERR plan and our plan. First,
improved homogeneity in the PTVs is clearly visualized in
our plan in Fig. 11, which exhibits: (1) spatial dose distribu-
tions that are much more uniform, as shown by black arrows
in Figs. 11(b) and 11(e) for PTV1 and dotted black arrows in
Figs. 11(b) and 11(e) for PTV2; and (2) a substantial reduc-
tion in hot-spot size and magnitude in PTV1 and PTV2, as
shown by the same arrows. Second, the large improvement in
parotid-sparing in our plan, which is clearly seen in the DVH

results, may be visualized by comparing Figs. 11(a) and 11(d)
and Figs. 11(b) and 11(e). Here, our method was able to carve
out a relatively large volume of low dose in and around the
parotid glands to substantially increase their sparing. Third,
our plan is more pleasing visually and generally has sharper
dose falloff away from PTV surfaces where OARs are rela-
tively adjacent, such as near the parotid glands in Figs. 11(a)
and 11(b) and the spinal cord in Figs. 11(a) and 11(c). This
improved OAR-sparing comes at the small expense of losing
target conformity in regions away from OAR overlap and rel-
ative adjacency, as indicated by white arrows in Figs. 11(c)
and 11(f).

III.C. Plan deliverability

As discussed in Sec. II, ratios of MI2D values of the E
sparse
tot -

optimized plans to their respective Eclipse→CERR plans
were used to quantify the relative complexity/deliverability of
the E

sparse
tot -optimized plans. Importantly, deliverability differ-

ences between E
sparse
tot -optimized plans and Eclipse→CERR

plans were unlikely to be clinically relevant, because the MI2D

ratios of Fig. 12 did not differ much from unity with a range
of 0.985–1.075 and a standard deviation 0.03. For reference,
the MI2D ratio of the Eclipse→CERR pancreas plan to the
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FIG. 12. MI2D ratios between E
sparse
tot -optimized plans and Eclipse→CERR

plans of the prostate, pancreas, and head-and-neck cases. MI2D ratio range
= 0.985–1.075. MI2D standard deviation = 0.03.

clinical pancreas plan, which was shown to have good behav-
ioral agreement in Fig. 3, was 1.03.

Inspection of the prostate case results in Fig. 12 shows
that plan TV2 and plan TV2c possessed the smallest MI2D

ratios of all plans. Therefore, PTV homogeneity may have
been correlated with plan deliverability for plans optimized
with our method. However, ETVR could not have been the
only contributor to MI2D ratio variation since the pancreas
and head-and-neck cases showed similar gains in PTV ho-
mogeneity, relative to the prostate case, but deviated from the
MI2D ratio of prostate plan TV2 in opposite directions. The
likely reason for this apparent discrepancy was the amount of
dose-carving necessary to achieve the desired planning goals.
Specifically, dose-carving in and around the parotid glands,
two relatively small structures near the exterior of the body,
required a smaller amount of isodose surface displacement
than dose-carving in and around the spinal cord, an extremely
long structure with a relatively central location.

By using the Eclipse plans, rather than Eclipse→CERR
plans, to calculate MI2D ratios we observe that our method is
far more deliverable than the actual clinical plans for the pan-
creas case (Eclipse MI2D ratio = 0.1925) and the head-and-
neck case (Eclipse MI2D ratio = 0.1548). E

sparse
tot -optimized

plans. A visual comparison depicting the differences in flu-

ence resolution between the clinical (Eclipse) and E
sparse
tot -

optimized plans is shown in Fig. 13, which compares the
beams optimized with Eclipse to the beams optimized with
E

sparse
tot for the pancreas case. The E

sparse
tot -optimized plan ap-

pears pixelated because it possesses sixteen-fold fewer beam-
lets than the clinical plan, but it is more deliverable as a result.

IV. DISCUSSION

In this work, we proposed a novel approach to shape the
spatial dose distributions of the PTV and OARs by applying
coupled L1 norms and linear constraints to the dose values
in PTVs and OARs and to dose gradients in PTVs. The L1

norm permits outliers—a sparse number of large deviations
from prescription—to arise in solution and improve tradeoff
between OAR-sparing and PTV homogeneity.

We performed three major comparisons to validate our
method. First, we used our method to generate five Pareto
plans for four prostate cases, which differed in how dose-
prescription and gradient penalties affected high-dose regions
in the PTV, and compared them to the corresponding clini-
cal plan using dose-volume histograms (DVHs), quantitative
descriptors, and visual analyses of dose maps. The results
showed that the total variation energy (ETVR) homogenized
the PTV’s spatial dose distribution through an anisotropic
smoothing mechanism that led to OAR-sparing when lightly
penalized and high PTV homogeneity when heavily penal-
ized. The high-dose leg of EPTV was found to compliment
ETVR well by reducing the magnitude and geometric selec-
tivity of hot spots. Properly balancing these two penalties
yielded more controlled and accurate dose-shaping than pos-
sible with the conventional objective function. Second, we
tested the generalizability of our method to more challenging
disease sites by repeating the same analyses for a pancreas
case and a head-and-neck case, and found that our method
produced plans with substantially improved PTV homogene-
ity and sparing of several OARs, notably the spinal cord in the
pancreas case and parotid glands in the head-and-neck case.
Third, we showed that our plans could make the aforemen-
tioned improvements to dose-shaping while being markedly

FIG. 13. Visual comparison of the Eclipse beams with E
sparse
tot beams for the pancreas case. Fluence intensity color bars are shown.
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more deliverable than Eclipse plans. As a result of these com-
parisons, we have gained great confidence that our method
can lead to improved planning performance under a wide
range of geometric and dose-planning conditions.

In the remainder of this section, we will discuss specifics
about: (A) the relative performance of our method in optimiz-
ing simple cases, such as the prostate, vs complicated cases,
such as the pancreas and head and neck; (B) the relation-
ship between hot-spot distribution and plan geometry; and (C)
other considerations and future work.

IV.A. Simple vs complicated cases

Treatment planning for prostate cancer involves relatively
few tradeoffs and is substantially less complicated to plan than
other tumor sites, such as head-and-neck cancer.37 Thus, mak-
ing substantial improvements over conventional plans using
our generalized-L1 method may be difficult, because there are
fewer tradeoffs to improve and fewer gains to be had. Con-
versely, sites with more complicated geometries and added
tradeoffs, such as the pancreas and head-and-neck, may bene-
fit more from our method, because there are more opportuni-
ties to strategically allocate outliers to regions where they ei-
ther do less harm or more good for multiple sets of structures.
So, the more structures there are, the more effective outlier
allocation and our method become. While more studies are
needed to ultimately validate this assertion, we believe that
our plans for the pancreas and head-and-neck cases provided
sufficient gains in DVH-based sparing and dose-shaping to
give credence to such an argument.

IV.B. Hot spots and plan geometry

In prostate cases, hot spots that developed in E
sparse
tot -

optimized plans were of higher magnitude and size than those
seen in E

sparse
tot -optimized plans of the pancreas and head-and-

neck. In fact, the pancreas PTV of the E
sparse
tot -opimized plan

was nearly uniform in dose, and hot spots that developed in
the head-and-neck PTVs, especially when compared with the
clinical plan, were minimal. The latter is especially surpris-
ing since the head-and-neck case possessed more structures,
i.e., tradeoffs, than the prostate cases and the pancreas case,
as well as a much more challenging geometry that included
adjacent PTVs and complicated structure shapes. By contrast,
the prostate geometry was relatively simple. In fact, prostate
PTVs are generally spherical or ellipsoidal in shape and the
bladder and rectum are also regular, particularly when com-
pared with structures at other sites, such as the small bowel in
the pancreas case and the mandible and parotid glands in the
head-and-neck case.

The main difference, then, is the amount of overlap be-
tween the OARs and the PTV, particularly the fraction of the
PTV that is overlapped by OARs. The logic behind this the-
ory can be easily demonstrated by analyzing the physical pro-
cess of dose-shaping. For a given IMRT case, there are a cer-
tain number of radiation beams that are used to deliver the
prescription dose to the target while sparing the OARs. As
the PTV-OAR overlap fraction increases, the concentration

of beams throughout the PTV becomes less uniform as more
beams are concentrated into nonoverlapping regions to spare
PTV-OAR overlaps of high doses. In other words, as PTV-
OAR overlap fraction increase, hot spots forming in nonover-
lapping regions increase in size and magnitude.

Thus, for prostate PTVs, which have relatively large over-
lap with OARs, beams are naturally concentrated in a rela-
tively small nonoverlapping region and hot spots are promi-
nent. Conversely, for the pancreas PTV, which is large and
negligibly overlapped by OARs, beam delivery is not con-
strained and hot spots are minimal in size and magnitude.
The hot spots of the head-and-neck PTVs were slightly more
prominent than those of the pancreas, because additional
dose-shaping is needed to deliver inhomogeneous prescrip-
tion to its three PTVs and targeted dose falloff from their
surfaces.

IV.C. Other considerations and future work

Since this was a pilot work to introduce a new optimiza-
tion objective formulation, there are a few aspects of this
study that warrant further investigation and discussion. In this
study, plans optimized using E

sparse
tot that had not been leaf-

sequenced were compared with clinical plans that had been
leaf-sequenced. The introduction of a leaf-sequencing mod-
ule would sacrifice the dose distribution, but only slightly,
since it has been shown that leaf-sequencing can make deliv-
ery acceptably efficient without appreciably degrading plan
quality.32, 38 This is especially true for the cases under ex-
amination here, as the optimized fluence maps were reason-
ably smooth (Fig. 3). On the other hand, fluence resolution
has a much larger effect on plan quality, because coarse-grid
fluence maps are physically limited in delivering steep dose
drop-offs from the PTV.34 Therefore, since the fluence grid
used by our method (1.0 × 1.0 cm) was much coarser than
that used by Eclipse (2.5 × 2.5 mm), the improvements made
by our method relative to conventional optimization would
have been even more pronounced had they been optimized
under equivalent conditions.

A more important issue regarding comparison fairness
concerns the potential suboptimality of the clinical plans used
for benchmarking. Despite the planner’s best effort, clinical
plans are obtained in an iterative setting, so optimality is not
guaranteed. On the other hand, at the core of the Eclipse sys-
tem is a weighted quadratic cost, which is convex. There-
fore, given the final objective parameters, this optimization
problem is expected to be solved well by the commercial in-
verse treatment-planning engine. From this perspective, the
clinical plans can be considered as the optimal solution to
a specific weighted quadratic objective, while consistency in
clinical parameter selection remains an issue that is outside
the scope of this study. However, since plans optimized with
E

sparse
tot possessed better PTV coverage, PTV homogeneity,

OAR-sparing, and deliverability than their clinical counter-
parts, it can be concluded that E

sparse
tot : (1) explores a different

Pareto surface than conventional optimization methods; and
(2) enables more efficient tradeoff between planning goals
than conventional optimization methods.
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Relatedly, while a more rigorous determination of E
sparse
tot

alpha/beta values with Pareto navigation may be possible, the
manual determination of their values in this work was made
on a site-specific basis using dose-volume goals as a guide.
So, while further improvement is possible, substantial gains
are not anticipated.

On the application end, we will plan additional pancreas
and head-and-neck cases to further validate the performance
of our approach and apply our strategy to a wider range of
anatomical sites. Upon further validation, we will develop a
treatment planning platform with more clinically oriented res-
olution and dose calculation to achieve the full dose-shaping
ability of our method.

V. CONCLUSIONS

We have investigated and developed a sparse objective
function (Esparse

tot ) to: (1) encourage better tradeoff between
competing objectives; (2) shift hot spots to insensitive re-
gions; and (3) provide extra flexibility in balancing PTV ho-
mogeneity, coverage, with OAR-sparing. We compared the
results of our method against the clinical plans of four prostate
cases, one pancreas case, and one head-and-neck case, and
showed substantial improvements to overall plan quality for
complicated disease sites, i.e., the pancreas and head and
neck, despite using a much coarser fluence grid for optimiza-
tion than the clinical system. Finally, E

sparse
tot . is linear pro-

gram, so it converges rapidly to the global solution and is eas-
ily implementable on various software platforms. Therefore,
it may be quickly translated to the clinic where we expect a
substantial impact on challenging cases.
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APPENDIX: RELATIVE ADJACENCY

Given a structured dose deposition matrix (A)39 that maps
influence bixel values (x) to the dose values (d), i.e., d = Ax,
tradeoff naturally exists between adjacent regions of dramat-
ically different dose goals. This tradeoff is carried out by the
bixels, which couple adjacent regions together by the corre-
sponding column of A (Fig. 14).
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