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ABSTRACT
Sliding effects often occur along tissue/organ boundaries.
However, most conventional registration techniques either
use smooth parametric bases or apply homogeneous smooth-
ness regularization, and fail to address the sliding issue. In
this study, we propose a class of discontinuity-preserving
regularizers that fit naturally into optimization-based reg-
istration. The proposed regularization encourages smooth
deformations in most regions, but preserves large discontinu-
ities supported by the data. Variational techniques are used to
derive the descending flows. We discuss general conditions
on such discontinuity-preserving regularizers, their properties
based on an anisotropic filtering interpretation. Preliminary
tests with 2D CT data show promising results.

Index Terms— variational methods, image registration,
adaptive filters.

1. INTRODUCTION

Medical registration techniques aim to find the coordinate
transformation that best matches two images. In general,
organ and tissue motions are nonrigid, and demonstrate high
degrees of freedom, which makes medical image registration
problems ill-posed. Prior knowledge about the underlying
physical process is incorporated to address this challenge. In
particular, smoothness of the transformation is widely uti-
lized: parametric methods use smooth basis functions (such
as B-spline) and optimize over relatively small number of co-
efficients; fully nonparametric methods such as optical flow
and bio-mechanical models with finite elements either build
in smoothness constraints or incorporate smoothness regu-
larization in an optimization framework. However, sliding
along tissue/organ boundary widely exists, and homogeneous
smoothing of the transformation field blurs the estimated
transformation across the sliding interface, resulting in unde-
sirable artifacts.

Recently, several studies [1, 2] of joint segmentation and
registration have arisen from various disciplines and applica-
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tions. In these methods, smooth regions and singularity sets
(edges) are devised according to image intensity, and regis-
tration aims to align each part respectively. The smoothness
and discontinuity in the deformation itself is not addressed
directly.

In this study, we propose a class of regularization schemes
that preserve discontinuities in the deformation field. We pro-
vide general analysis on their functional forms, and some de-
sired properties as a consequence. We derive the descending
flow for optimization and discuss briefly some implementa-
tion issues. A preliminary 2D test with clinical CT data shows
promising results.

2. PROPOSED METHOD

For simplicity, we discuss the 2D case, yet all analysis gener-
alizes to higher dimensions. We denote the source and target
images as f, g : Ω ⊂ <2 → < where Ω denotes the region
of interest (ROI). We denote the deformation vector field as
W : Ω → <2 with W (x) = [U(x), V (x)]T , i.e., U and
V are directional deformation and assumed to be orthogonal
(but does not have to align with the image coordinate (x, y))
in general. Regularized registration aims to find

W ∗ = arg min
W∈Γ

E(W, f, g) (1)

= arg min
W∈Γ

{Ed(g, f ◦ (I +W )) + λEr(W )},

where Γ is the allowable set of deformations and λ controls
the tradeoff between data fidelity and regularization energy.
The choice of Ed depends on the image modality and the
quantity of interest. We focus here on designing Er.

To encourage smooth deformations in most of the region
of interest (ROI), yet admitting some discontinuities requires
a “magnitude” measure of the local change of the deformation
field, analogous to the norm of image gradient in intensity
domain. The Jacobian of the deformation W at x is given by:

DW (x) =

[

Ux Uy
Vx Vy

]

.

We propose to use the Frobenius norm of the matrix DW (x)



as the local measure of variation for the deformation field:

|DW |Frob =
√

U2
x + U2

y + V 2
x + V 2

y (2)

=
√

|∇U |22 + |∇V |22.

This matrix norm is independent of both the image coordinate
system x−y and the deformation vector field direction u−v.
In addition, this measure of “deformation change” introduces
coupling among the various directions in the vector fields and
reflects the intuition that we observe a “jump” in the defor-
mation field regardless of the specific direction such change
occur, unlike the simple coordinate-wise sum used in tradi-
tional optical flow regularization [3, 4]. For simplicity, we
make matrix Frobenius norm the default notation for |DW |
hereafter and drop the subscript.

We consider a class of regularizers with the form:

Er(W ) =

∫

φ(|DW |)dx.

Applying variational analysis, and assuming Neuman
boundary conditions, i.e., ∂nU = 0 and ∂nV = 0 on ∂Ω, we
derive the descent flow wr = (ur, vr) of Er to be as follows:

ur = ∇ ·
( ∂

∂∇u
φ
)

(3)

= ∇ ·
(φ′(|DW |)

|DW |
∇U

)

.

The expression for the update flow vr for V is similar. For
simplicity, we define the “influence function” as ψ(s)

4
=

φ′(s)/s.
To design a proper regularization φ that results in edge

preserving flow, we interpret the process as anisotropic fil-
tering and decompose the effect of the flow into the normal
and tangent directions for each component of the deforma-
tion field. It can be shown that the regularization flow in u−
direction is:

ur = ψ(|DW |)(Uxx + Uyy) + (4)

+ φ′′(|DW |)−ψ(|DW |
|DW |2 (U2

xUxx + 2UxUyUxy + U2
yUyy)

By convention, we denote the second derivative of U in
the tangent (T-) direction and normal (N-) direction as UTT
and UNN respectively, with

UTT = TT∆UT =
1

|∇U |
(U2

xUyy + U2
yUxx − 2UxUyUxy);

UNN = NT∆UN =
1

|∇U |
(U2

xUxx+U2
yUyy+2UxUyUxy).

Rearranging the terms in (5) results in:

ur = ψ(|DW |)UTT + (5)
+ |∇U |2{φ

′′(|DW |)
|DW |2 − ψ(|DW |)

|DW |2 + ψ(|DW |)
|∇U |2 }UNN

For 2D case (higher dimension situations have similar
structure):

ψ(|DW |)

|∇U |2
−
ψ(|DW |)

|DW |2
= ψ(|Dw|)

|∇V |2

|DW |2|∇U |2
.

The coupling between U and V in the flow motivates us
to consider the contribution of variation in each deformation
direction in |DW |. We define βu

4
= |∇U |2

|DW |2 and βv
4
= |∇V |2

|DW |2 .
By construction, β ∈ [0, 1] and βu + βv = 1. Then (6) can
be rewritten as:

ur = [βuφ
′′(s) + ψ(s)βv]UNN + ψ(s)UTT , (6)

Now we are ready to discuss some desired properties for
the function φ. This is more complicated than image restora-
tion problems as φ is intrinsically a function of both U and
V .

• In the presence of small variations in the deformation,
(|DW | small implies |∇U |, |∇V | both small), isotropic
smoothing is desirable in each individual deformation
direction. It is reasonable to require non-trivial smooth-
ing along the tangent direction:

φ′(0) = 0, with lim
s→0+

ψ(s) > 0. (7)

To have isotropic diffusion as s→ 0+ is equivalent to:

lim
s→0+

βv + βu
φ′′(s)

ψ(s)
= 1.

Together with the fact that βu + βv = 1, isotropic dif-
fusion for small deformation implies

lim
s→0+

ψ(s) = lim
s→0+

φ′′(s) > 0. (8)

Once the conditions 7 and 8 are satisfied, the flow (6)
for small variation reduces to:

ur ≈ φ′′(0)∆U.

The same analysis holds for vr.

• In the presence of large variations in deformation (large
|DW |), it is desirable to diffuse along the discontinuity,
but not across it. We need to keep in mind that the level
of discontinuity |DW | takes into account deformation
in all directions, and the diffusion process in a certain
direction (u or v) is decomposed with respect to its own
gradient field. In other words, the diffusion process in
U direction is the projection of the joint deformation
flow onto that direction. To preserve discontinuity, it
suffices to annihilate the coefficients of UNN and VNN
for large |DW |, and assume non-vanishing coefficients
for the tangent flow components.

{

lims→+∞ βuφ
′′(s) + ψ(s)βv = 0;

lims→+∞ ψ(s) > 0.



If one were to insist on the annihilation of the normal
flow for all possible combinations of (βu, βv), it would
be necessary to require:

lim
s→+∞

φ′′(s) = 0 and lim
s→+∞

ψ(s) = 0.

On the other hand, if βu ≈ 0, indicating that the
variation in u−direction is relatively small, isotropic
diffusion in that direction would not result in over-
smoothing discontinuity and should be acceptable.
With V being the major contributor to the overall dis-
continuity in |DW |, only VNN has to be annihilated.
Unfortunately, this again results in a set of incompati-
ble conditions on φ:

lim
s→+∞

φ′′(s) ≤ 0 and lim
s→+∞

ψ(s) ≥ 0.

One possible compromise is to let both terms approach
zero as s→ +∞, but at different rates:

{

lims→+∞ φ′′(s) = lims→+∞ ψ(s) = 0;

lims→+∞
φ′′(s)
ψ(s) = 0.

(9)

Many functions satisfy the above conditions 7,8 and 9, e.g.,
the hypersurface minimal function. Due to the nonconvex na-
ture of registration problems, we are only interested in finding
reasonable local minima in general. When Ed is nonconvex
in W , it is not necessary to insist on φ being convex.

3. A TEST SETUP

For simplicity, we consider mono-modality registration with
L2 norm as the data fidelity measure, i.e.,

Ed =
1

2

∫

Ω

(g(x) − f(x +W (x)))2,

and the corresponding variational descent flow is given by:

wd(x) = (g(x) − f(x +W (x))∇f(x +W (x)).

For the preliminary test, we use truncated quadratic [5] as the
regularization function:

φ(s, α) =

{

(α0

α
)2s2 |s| ≤ α

α2
0 otherwise. (10)

The disadvantage and benefit of this choice are both obvious.
With strict “saturation” behavior above the scale parameter α,
it poses a challenge for optimization. Graduated nonconvex-
ification approaches have to be utilized. On the other hand,
this formulation provides nice theoretical interpretations. It is
natural to introduce a line process [6] which is equivalent to
“labeling” the outlier in the robust estimation setting [7].

s

φ(
s,

α)

 

 

α = α0
α = 3/4 α0
α = 1/2 α0

Decreasing α

Fig. 1. Truncated quadratic regularization with varying scale.

Notice that (10) also provides a simple recipe to extract
singularity set S of |DW | from the estimated W by thresh-
olding at level α:

S = {x : |DW (x)| > α}.

This is useful if one is interested in extracting motion inter-
faces.

To alleviate the local minima issue due to nonconvexity,
we start with a large initial α. This is equivalent to use con-
ventional Tikhonov regularization of the form Er = |∇U |2 +
|∇V |2 as S = ∅ for α large enough. Then the scale parameter
α is gradually decreased till the desired tolerance for discon-
tinuity. To speed up the implementation, a multi-resolution
scheme is applied.

4. RESULTS

We apply the setup described in Section 3 to two coronal CT
slices obtained from deep inhale and exhale phases. Proposed
regularization results in smooth deformation in homogeneous
organ (lung, heart and exterior of rib-cage) and correctly pre-
serves motion interfaces on the boundaries between the di-
aphragm, heart atria, rib cage and the lungs.

5. CONCLUSION

We have proposed a class of regularizations that preserve dis-
continuities in deformation fields. It applies a robust esti-
mation function to a coordinate-free measure of deformation
variation to ensure smoothness in most ROI, yet also allow-
ing for singularities. In the future, we will further investigate
numerical aspects of this problem, 3D applications and assess
the performance quantitatively.
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(a) source image (inhale) (b) target image (exhale)

(c) deformed source with Tik. reg.(d) deformed source with TQ. reg.
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(e) |DW | with Tik. reg.
 

 

1

2

3

4

5

6

7

8

9

10

11

(f) DW with TQ. reg.

Fig. 2. Registration comparison between Tikhonov (Tik) and
Truncated quadratic (TQ) regularizations.
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