

A database paradigm for the management of DICOM-RT
structure sets using a geographic information system

Weber Shao1, Patrick A Kupelian1, Jason Wang1, Daniel A Low1, Dan Ruan1
1Department of Radiation Oncology, David Geffen School of Medicine at UCLA

E-mail: druan@mednet.ucla.edu

Abstract. We devise a paradigm for representing the RT structure sets in the database
management system, in such way that secondary calculations of geometric information can be
done quickly from the existing RT contour definitions. The implementation of the paradigm is
achieved using the PostgreSQL database system and the PostGIS extension, a geographic
information system commonly used for encoding geographical map data. The proposed
paradigm eliminates the overhead of retrieving large data records from the database, as well as
the need to implement various numerical and data parsing routines, when additional
information related to the geometry of the anatomy is desired.

1. Introduction
DICOM-RT, a widely utilized extension to the Digital Imaging and Communications in Medicine
(DICOM) imaging standard, represents many aspects of radiotherapy imaging. One of such is the RT
structure sets, a group of definitions of anatomical regions of interest. It is desirable to devise a
paradigm for representing the RT structure sets in the database management system, in such way that
secondary calculations of geometric information can be performed quickly from the existing RT
contour definitions.
 To achieve this, there are two possible general approaches. One approach is to rely on client-
side processing after record retrieval from the database. Using this method, client-side computation
can be carried out swiftly if the routine is implemented using a compiled language such as C, at the
expense of having to handle memory management. A bigger drawback of this approach is the
relatively long data retrieval time due to the size of the collection of RT contour records.
 The alternative approach is to perform computation directly on the database server before the
query and retrieval. This method produces shorter data retrieval time than does the client-side
processing approach, since only the results, as opposed to the sets of contours, need to be returned by
the SQL query. However, the performance would suffer significantly if the mathematical calculations,
which would require loops, are carried out purely using a stored procedure language, which is
processed through an interpreter.
 Therefore, in order for the server-side computation approach to be efficient, it ought to be
supplemented with an additional set of SQL functions in the form of pre-compiled binary objects.
While it is possible to extend the SQL language by writing and compiling C routines into functions, it
is optimal to employ a geographic information system (GIS), which is historically used for storing,
managing, and manipulating geographical spatial data. Specifically, we aim to accomplish this goal
using PostGIS, an extension of the PostgreSQL database management system (DBMS).

2. Experiment Background
An experiment is conducted to measure the computations of three common quantities pertaining to a
structure set: surface area, volume, and geometric centroid. The experiment encompasses the two
aforementioned approaches and is administered in two settings for each approach:

2.1. Approaches
We hereinafter refer to the approach of server-side computation using GIS as Approach 1, and the
approach of client-side computation as Approach 2. In each approach, the database query operation is
wrapped inside a C client program supported by the libpq5 library.

2.1.1. Approach 1. PostgreSQL 9.1 is used as the DBMS, along with PostGIS 2.0.1.

2.1.2. Approach 2. PostgreSQL 9.1 is used as the DBMS.

2.2. Settings
The database server is hosted on a workstation with 12 Intel Xeon E5645 2.4GHz CPUs and 12GB of
RAM. Settings 1 and 2 differ in the location of the client program.

2.2.1. Setting 1. The client program resides on the same workstation as that of the database server.

2.2.2. Setting 2. The client program resides on a remote workstation, which has 2 Intel(R) Core(TM) 2
Duo E7400 2.80GHz CPUs and 4GB of RAM, and is connected through a cable modem at a
maximum of 30Mbps. The remote workstation is 7 networking hops away from the database server,
and physically separated by 23 miles.

3. Structure
In the DICOM-RT specification, one course contains several structures. Each structure is represented
by a collection of contours. Each contour is a closed set of vertices which share a common z-
coordinate. In Approach 1, the set of vertices is modelled by polygon, a two-dimensional PostGIS
geometric data structure. In Approach 2, the set of vertices is modelled by an array of floating point
numbers. With the exception of the difference in the data type representation of contours, the database
tables and their relations are identical in both approaches.

Figure 1. Storage Paradigm for RT Contours

4. Methods
For Approach 1, we will invoke several PostGIS API functions to carry out the computation of two-
dimensional geometric measurements as SQL columns, which is used with aggregate functions, and if
necessary, nested queries, to calculate the quantities interest: surface area, volume, and geometric
centroid. As of PostGIS version 2.0.1, three-dimensional support is only limited to a few functions
related to polygonal surfaces and triangular irregular networks, and therefore is not used by this
approach. Approach 2 is implemented by directly coding the mathematics of Equations (1) to (7)
inside the C routines.

4.1. Surface Area
For computing the total surface area of an anatomical structure represented in DICOM-RT, the
algorithm is to find the product of the total path length and the slice thickness of its z-plane, Δz:

 ∑
−

=
++ −+−Δ=

1

0

2
1

2
1)()(

N

i
iiiisurface yyxxzA (1)

This calculation is simple because the slice thickness denoted in DICOM-RT structure sets is uniform
across all contours. Approach 1 requires only a single SQL query, invoking the st_boundary() function
to return the vertices of the polygon, and the st_length() function to yield the contour path length. The
surface areas of all contour sets within a treatment course can be obtained by the following query:

 SELECT cotr."RsSiUid", cotr."StName",
 SUM(crs.”RsDz” * st_length(st_boundary(cotr."ContPoly")))
 FROM "Contour" AS cotr, "Course" AS crs
 WHERE cotr."RsSiUid" = crs."RsSiUid"
 AND crs."MRN" = 'XX-XX-XXX'
 GROUP BY cotr."RsSiUid", cotr."StIndex", cotr."StName"
 ORDER BY cotr."RsSiUid", cotr."StIndex"

4.2. Volume
The volume of a DICOM-RT anatomical structure is given by the product of the slice thickness and
the sum of the areas of each contour:

 ∑
−

=

Δ=
1

0
,

M

j
jcontourAzV (2)

The area of each contour is given by:

 ∑
−

=
++ −=

1

0
11)(

2
1 N

i
iiiicontour yxyxA (3)

Thus the SQL query in Approach 2 for the calculation for (2) can be made with the assistance of the
invocation of the st_area() function, which produces the contour area in lieu of implementing the
mathematics of (3) directly. Thus the volumes of all contour sets within a treatment course can be
obtained by one query:

 SELECT cotr."RsSiUid", cotr."StIndex", cotr."StName",
 SUM(crs.”RsDz” * st_area(cotr."ContPoly"))
 FROM "Contour" AS cotr, "Course" AS crs
 WHERE cotr."RsSiUid" = crs."RsSiUid"
 AND crs."MRN" = 'XX-XX-XXX'
 GROUP BY cotr."RsSiUid", cotr."StIndex", cotr."StName"
 ORDER BY cotr."RsSiUid", cotr."StIndex"

4.3. Centroid
To calculate the three-dimensional centroid of a structure, first we need to find the two-dimensional
centroid (Px, Py) of each contour that belongs to the structure:

 ∑
−

=
+++ −+=

1

0
111))((

6
1 N

i
iiiiii

signed
x yxyxxx

A
P (4)

 ∑
−

=
+++ −+=

1

0
111))((

6
1 N

i
iiiiii

signed
y yxyxyy

A
P (5)

where Asigned is the signed area defined by:

 ∑
−

=
++ −=

1

0
11)(

N

i
iiiisigned yxyxA (6)

Then the three-dimensional centroid (Cx, Cy, Cz) of the structure would be the weighted average of the
centroid of each contour, where the weight is the area of each contour, Acontour,j:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∑

∑

∑

∑
=

=

=

=
M

j
jzjcontour

M

j
jyjcontour

M

j
jxjcontour

M

j
jcontourz

y

x

PA

PA

PA

AC
C
C

0
,,

0
,,

0
,,

0
,

1
 (7)

While Px and Py are given by Equations (4) and (5), Pz is simply the z-coordinate value where the
contour is defined, which corresponds to the PosZ column of the of the Contour table in the database
structure diagram in Figure 1. For the SQL query in Approach 1, we can use a subquery to compute
the reusable quantities of area contour, Acontour,j. The PostGIS st_centroid() function would handle the
calculation of the two-dimensional contour centroid, while the st_x() and st_y() functions would return
the x and y coordinates, respectively. Thus, the calculation of the geometric centroids of all the
structure sets for one treatment course can be accomplished in one nested query:

 SELECT bar."RsSiUid", bar."StIndex", bar."StName",
 SUM(bar.area * bar.x) / SUM(bar.area),
 SUM(bar.area * bar.y) / SUM(bar.area),
 SUM(bar.area * bar.z) / SUM(bar.area)
 FROM (
 SELECT cotr."RsSiUid",
 cotr."StIndex", cotr."StName", cotr."ContIndex",
 st_area(cotr."ContPoly") AS area,
 st_x(st_centroid(cotr."ContPoly")) AS x,
 st_y(st_centroid(cotr."ContPoly")) AS y,
 cotr."PosZ" AS z
 FROM "Contour" AS cotr, "Course" AS crs
 WHERE cotr."RsSiUid" = crs."RsSiUid"
 and crs."MRN" = 'XX-XX-XXX'
) AS bar
 GROUP BY bar."RsSiUid", bar."StIndex", bar."StName"
 ORDER BY bar."RsSiUid", bar."StIndex"

5. Results and Discussions
After 4 iterations each across 24 prostate cases, we obtain the following results of average processing
time for each approach under with each setting:

Table 1. Performance comparison of settings and approaches
Setting, Approach Surface Area Volume Centroid
Local Retrieval, PostGIS-Based 148 ms 124 ms 224 ms
Local Retrieval, Client-Based 415 ms 405 ms 405 ms
Remote Retrieval, PostGIS-Based 329 ms 304 ms 406 ms
Remote Retrieval, Client-Based 1296 ms 1300 ms 1290 ms

Figure 2. Performance comparison of settings and approaches

The approach of using PostGIS is noticeably faster than the approach of relying client-side
computation. The difference is more evident in the setting where the workstation is remotely located
from the database server. While the result of Setting 2, Approach 2 is dependent on the hardware
processing power of the remote client, as well as the network transfer time, the scenario presented here
is realistic. The database server typically has a more powerful processor and is equipped with more
RAM than a client workstation. The database server and the remote client could very possibly have a
longer distance or a slower connection mechanism than the one presented here, which would produce
a sharper contrast in the performance of the two approaches.

6. Conclusions
The proposed paradigm for DICOM-RT structure set archival provides several benefits. First, it
eliminates the overhead of retrieving large records from the database. Second, it simplifies the
implementation of various numerical and data parsing routines, by relying on a solid application
framework that is deployed for production worldwide. Additionally, the centralized, server-side design
allows its functionalities to be utilized by various parties.

7. References
[1] Obe R and Hsu L 2011 PostGIS in Action (Shelter Island, NY: Manning)
[2] Bourke P 1988 Calculating The Area And Centroid Of A Polygon, Retrieved December 12,
2012 from http://paulbourke.net/geometry/polygonmesh/

